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Why parallel algorithms?

. . . parallelism makes things more complicated. . .

But:

everyone has a parallel computer today: Dual-Core
Laptops, Playstation 3, . . .
modern supercomputing architectures have more
processors than ever
(BlueGene/L: 131072, Grid-Computing: possibly
millions)



Goals when designing parallel algorithms

Work-Optimality: “Plain computation time of
fastest sequential algorithm can be divided by p on
p processors.”
Reduce communication complexity: Low
communication complexity⇒⇒⇒ good on slow
communication networks (e.g. Grid-Computing /
Clusters).
Scalable Communication: More processors ⇒ less
communication
Reduce latency: Sending a single message to
another processor (or reading a single byte from
shared memory) incurs overhead⇒⇒⇒ “Hide” latency
by transferring large blocks.
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BSP Algorithms

Bulk-Synchronous Parallelism

Model for parallel computation:

L. G. Valiant.
A bridging model for parallel computation.
Communications of the ACM, 33:103–111, 1990.

Main ideas:
p processors working asynchronously
Can communicate using g operations to transmit
one element of data
Can synchronise using l sequential operations.



BSP Algorithms

Bulk-Synchronous Parallelism

Computation proceeds in supersteps
Communication takes place at the end of each
superstep
Between supersteps, barrier-style synchronisation
takes place
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BSP Algorithms

Bulk-Synchronous Parallelism

Superstep s has computation cost ws and communica-
tion hs = max(hins , h

out
s ).

When there are S supersteps:
⇒ Computation work

W =
∑

16s6S

ws

⇒ Communication
H =

∑
16s6S

hs

Formula for running time: T = W+ g ·H+ l · S.
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Basic BSP Algorithms
Grid dag computation

Applicable for dynamic
programming with
grid-dag
data-dependencies
Can partition into p2

boxes and proceed in
wavefronts
2p− 1 supersteps
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Basic BSP Algorithms
Parallel Prefix

Definition (Parallel Prefix)
Given n values x1, x2, . . . , xn and an associative
operator ⊕, compute the values x1, x1 ⊕ x2, x1 ⊕ x2 ⊕ x3,
. . . ,

⊕
i=1,2,...,n xi.

Fact. . .
Under some natural assumptions, we can carry out a
parallel prefix operation over n elements on a BSP
computer with p processors using W = O(n

p ), H = O(p)

and S = O(1).
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The LCS Problem

Definition (Input data)
Let x = x1x2 . . . xm and y = y1y2 . . .yn be two strings on
an alphabet Σ.

Definition (Subsequences)
A subsequence u of x: u can be obtained by deleting
zero or more elements from x.

Definition (Longest Common Subsequences)
An LCS (x, y) is any string which is subsequence of both
x and y and has maximum possible length. Length of
these sequences: LLCS (x, y).



The Semi-local LCS Problem

Definition (Substrings)
A substring of any string x can be obtained by removing
zero or more characters from the beginning and/or the
end of x.

Definition (Highest-score matrix)
The element A(i, j) of the LCS highest-score matrix of
two strings x and y gives the LLCS of yi . . .yj and x.

Definition (Semi-local LCS)
Solutions to the semi-local LCS problem are represented
by a (possibly implicit) highest-score matrix A(i, j).
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Parallel algorithms for LCS computation

W H S References
Global LCS

O(n2

p ) O(n) O(p) [McColl’95]+
[Wagner & Fischer’74]

String-Substring LCS
O(n2

p ) O(Cp1/Cn logp) O(logp) [Alves+’03]

O(n2

p ) O(n logp) O(logp) [Tiskin’05],
[Alves+:06]

String-Substring, Prefix-Suffix LCS

O(n2 logn
p ) O(n2 logp

p ) O(logp) [Alves+’02]

O(n2

p ) O(n) O(p) [McColl’95]+
[Alves+’06], [Tiskin’05]

O(n2

p ) O(n logp√
p ) O(logp) NEW
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LCS grid dags and highest-score matrices

LCS Problem can be
represented as longest
path problem in a Grid
DAG
String-Substring LCS
Problem⇒⇒⇒
A(i, j) = length of
longest path from (0, i)
to (n, j) (top to bottom).

Example

a b c a
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x



Extended grid dag

Infinite extension of the LCS grid dag, outside the core
area, everything matches:

The extended highest-score matrix is now defined on
indices [−∞,+∞]× [−∞,+∞].



Critical points

Definition (Critical Point)
Odd half-integer point (i − 1

2 , j + 1
2) is critical iff.

A(i, j) + 1 = A(i − 1, j) = A(i, j + 1) = A(i − 1, j + 1).

Theorem (Schmidt’95, Alves+’06, Tiskin’05)
1 We can represent a the whole extended

highest-score matrix by a finite set of such critical
points.

2 Assuming w.l.o.g. input strings of equal length n,
there are N = 2n such critical points that implicitly
represent the whole score matrix.

3 There is an algorithm to obtain these points in time
O(n2).
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Highest-score matrices

Example (Explicit highest-score matrix)
0 1 2 3 4 5 6 7

-4 4 4 4 4 4 4 4 4
-3 3 3 3 4 4 4 4 4
-2 2 2 3 4 4 4 4 4
-1 1 1 2 3 3 3 4 4
0 0 1 2 3 3 3 4 4
1 -1 0 1 2 2 2 3 4
2 -2 -1 0 1 1 2 3 4
3 -3 -2 -1 0 1 2 3 4

Example (Implicit score matrix)
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Additional definitions

Definition (Integer ranges)
We denote the set of integers {i, i + 1, . . . , j} as [i : j].

Definition (Odd half-integers)
We denote half-integer variables using a ,̂ and denote
the set of half-integers {i + 1

2 , i + 3
2 , . . . , j − 1

2 } as 〈i : j〉.



Querying highest-score matrix entries

Theorem (Tiskin’05)
If d(i, j) is the number of critical points (̂ı, ̂) in the
extended score matrix with i < ı̂ and ̂ < j, then
A(i, j) = j − i − d(i, j).

Definition (Density and distribution matrices)
The elements d(i, j) form a distribution matrix over the
entries of a density (permutation) matrix D which uses
odd half-integer indices and has nonzeros at all critical
points (̂ı, ̂) in the extended highest-score matrix:

d(i, j) =
∑

(ı̂,̂)∈〈i:N〉×〈0:j〉

D(̂ı, ̂)
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“Seaweed” chart

Critical points can be drawn as “seaweeds” in the grid
graph

0 1 2 3 4-1-2-3-4 5 6 7 8



“Seaweed” chart

Critical points can be drawn as “seaweeds” in the grid
graph

0 1 2 3 4-1-2-3-4 5 6 7 8

d(1, 4) = 1

A(1, 4) = 4 − 1 − 1 = 2
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Sequential highest-score matrix multiplication

Algorithm, Tiskin’05
Given the distribution matrices dA and dB for two
adjacent blocks of equal height M and width N in the
grid dag, we can compute the distribution matrix dC for
the union of these blocks in O(N1.5 + M).



Sequential highest-score matrix multiplication

Score matrix multiplication: Two parts

“Trivial part” (O(M)):

0 1 2 3 4-1-2-3-4 5 6 7 8



Sequential highest-score matrix multiplication

Score matrix multiplication: Two parts

“Nontrivial part” (O(N1.5)):

0 1 2 3 4-1-2-3-4 5 6 7 8



Nontrivial part

Non-trivial part can be seen as (min,+) matrix
product (dA|B|C are now the nontrivial parts of the
corresponding distribution matrices):

dC(i,k) = min
j

(dA(i, j) + dB(j,k))

Explicit form, naive algorithm: O(n3)

Explicit form, algorithm that uses score matrix
properties: O(n2)

Implicit form, divide-and-conquer: O(n1.5)



Divide-and-conquer multiplication
C-blocks and relevant nonzeros

DA

DB

DC



Divide-and-conquer multiplication
δ-sequences and relevant nonzeros

Splitting a given set of relevant nonzeros in DA and DB

into two sets at a position j ∈ [0 : N], we get the number
of relevant nonzeros in DA up to column j − 1

2 , and the
number of relevant nonzeros in DB starting at row j + 1

2 :

Definition (δ-sequences)

DA

DB

DC

← j



Divide-and-conquer multiplication
δ-sequences and j-blocks

Definition (j-blocks)
Contiguous sets of j called “j-blocks”, corresponding to
a value of d ∈ [−h : h], are defined as
J �(d) = {j | δ�A(j) − δ�B(j) = d}.

A j-block need not exist for every d.
Small C-blocks ⇒ few j-blocks, as the number of
relevant nonzeros decreases with the block size.
Can determine the j-blocks by a scan of the
relevant nonzeros.



Divide-and-conquer multiplication
More on j-blocks

Example (j-blocks)

d = h

δA

j

h

d = 0d = −h

δB

Definition (∆-sequences)
δ’s don’t change inside a j-block ⇒

∆�A(d) = any
j∈J �(d)

δ�B(j)

∆�B(d) = any
j∈J �(d)

δ�B(j)
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Example (j-blocks)
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Divide-and-conquer multiplication
Local minima

Definition (local minima)
The sequence

M�(d) = min
j∈J �(d)

(dA(i0, j) + dB(j,k0))

contains the minimum of dA(i0, j) + dB(j,k0) in every
j-block.

! We can have different values of M in one j-block.
We can use M’s and ∆’s to compute the number of
nonzeros in a C-block.



Divide-and-conquer multiplication
Recursive step

Sequences M for every C-subblock can be computed in
O(h):

M (d ′) = min
d

M�(d),

M (d ′) = min
d

M�(d) + ∆̄B (d),

M (d ′) = min
d

M�(d) + ∆̄A (d),

M (d ′) = min
d

M�(d) + ∆̄A (d) + ∆̄B (d)

having ∆̄
(i ′,k ′,h

2 )

A (d) − ∆̄
(i ′,k ′,h

2 )

B (d) = d ′ with d ′ ∈ [−h
2 : h

2 ].



Divide-and-conquer multiplication
Recursive step

Sequences ∆A(d ′) and ∆B(d ′) can also be
determined in O(h) by a scan of the relevant
nonzeros for each subblock.
Knowing ∆A(d ′), ∆B(d ′) and M(d ′) for each
subblock, we can continue the recursion in every
subblock.
The recursion terminates when N C-blocks of size 1
are left.
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Simple parallel algorithm

We can use the described multiplication procedure to
derive a parallel algorithm that uses W = O(n2

p ),
H = O(n logp) and S = O(logp):

1 2 3



What can we improve?

O(N) data elements need to be transferred in every
step of the merging tree.
For very long strings, this is not desirable.
To improve on the communication, parallelise the
non-trivial step of the multiplication procedure.
The goal is to decrease communication necessary
for score-matrix multiplication to O(N/

√
p).

⇒ this achieves scalable communication



Basic algorithm idea

Start the recursion at a point where there are p
C-blocks.
This is at level 1

2 logp.
Precompute and distribute the required sequences
∆ and M for each C-block in parallel.
Every C-block has size h = N√

p , and hence requires

sequences with O( N√
p) values.

After these sequences have been precomputed and
redistributed, we can use the sequential algorithm
to finish the computation.



Assumptions

Assume that:
√
p is an integer.

Every processor has unique identifier q with
0 6 q < p.
Every processor q corresponds to exactly one
location (qx,qy) ∈ [0 :

√
p − 1]× [0 :

√
p − 1].

Initial distribution of nonzeros in DA and DB is
assumed to be even among all processors.



First Step

Redistribute the
nonzeros to strips
of width N

p

Send all nonzeros
(̂ı, ̂) in DA and
(̂, k̂) in DB to
processor
b(̂ − 1

2) · p/Nc.
Possible in one
superstep using
communication
O(N

p ).

DA

DB

DC

} Np
p

Np
p

︸︷︷︸

i

k

j

p vertical strips
N
p
nonzeros each



Precomputing M

DA

DB

DC

i

k

j

Compute the elementary (min,+) products dA(◦◦◦x, j) +

dB(j,◦◦◦y) along j ∈ [0 : N].



Precomputing M

DA

DB

DC

i

k

j

Every processor holds all DA(̂ı, ̂) and all DB(̂, k̂) for ̂ ∈
〈q · N

p : (q + 1) · N
p 〉.



Precomputing M

DA

DB

DC

i

k

j

Can compute the values dA(◦◦◦x, j) and dB(j,◦◦◦y) by using
parallel prefix/suffix.



Precomputing M

DA

DB

DC

i

k

j

After prefix and suffix computations, every processor
holds N/p values dA(◦◦◦x, j) + dB(j,◦◦◦y) for j ∈ [q · N√

p :

(q + 1) · N√
p ].



Redistribution Step

DA

DB

DC

i

k

j

p vertical strips N
p
nonzeros each

DA

DB

DC
p

p horizontal strips with Np
p

nonzeros each

⇒



Analysis

Computational work bounded by the sequential
recursion:
W = O((N/

√
p)1.5) = O(N1.5/p0.75)

Every processor holds O(N/p) nonzeros before
redistribution.
Every nonzero is relevant for

√
p C-blocks.

⇒ O(N/
√

p) communication for redistributing the
nonzeros.

⇒ H = O(N/
√

p + p + N/
√

p) = O(N/
√

p)

(if N/
√

p > p → N > p1.5)
S = O(1) (parallel prefix)
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Quadtree Merging

First, compute scores for a regular grid of p

sub-dags of size n/
√

p× n/
√

p

Then merge these in a quadtree-like scheme using
parallel score-matrix multiplication:



Analysis

Quadtree has 1
2 log2 p levels

On level l, 0 6 l 6 1
2 log2 p, we have

pl = p
4l (number of processors that work together on one

merge)

Nl = N
2l (block size of merge)

⇒ wl = O

( (
N
2l

)1.5
(

p

4l

)0.75
)

= O
(

N1.5

p0.75

)

⇒ hl = O

(
N
2l(

p

4l

)0.5
)

= O
(

N
p0.5

)



Analysis

Quadtree has 1
2 log2 p levels

Hence, we get

work W = O(n2

p + N1.5 logp
p0.75 ) = O(n2/p)

(assuming that n > p2),
communication H = O(n logp√

p ), and

S = O(logp) supersteps.



Summary

This talk was about. . .
. . . an introduction to parallel algorithms using BSP,
. . . an overview of some semilocal string
comparison algorithms,
. . . a parallel algorithm for semilocal string
comparison that is communication efficient and
work-optimal, and is asymptotically better than
even global LCS computation.



Outlook

Algorithmic:
Score matrix multiplication can also be applied to
create a scalable algorithm for the iongest
increasing subsequence problem.
Adapt this algorithm for computing edit-distances.
Study different problems from a BSP perspective.

Algorithm Engineering
Implement this algorithm using BSP-Tools, study
load-balancing strategies
Implement BSP tools that allow easier creation of
hierarchical BSP algorithms like the one shown here
Compare performance between “old-style” BSP on
MPI and newer approaches, like skeletons and
GASNet-based languages.
Library of BSP algorithmic templates.



Thank you!
Any questions?



Seaweed-algorithm

Seaweed-Algorithm on a single cell level:
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Seaweed-Algorithm on a single cell level:
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We know what to do when there is a match. . .



Seaweed-algorithm

Seaweed-Algorithm on a single cell level:
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i > j
No match⇒⇒⇒ check for double crossing. . .
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