Efficient parallel string comparison

Peter Krusche

Department of Computer Science University of Warwick

AFM Seminar, 23rd of April, 2007

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Why parallel algorithms?

. . . parallelism makes things more complicated. . .
But:

- everyone has a parallel computer today: Dual-Core Laptops, Playstation 3, ...
- modern supercomputing architectures have more processors than ever (BlueGene/L: 131072, Grid-Computing: possibly millions)

Goals when designing parallel algorithms

- Work-Optimality: "Plain computation time of fastest sequential algorithm can be divided by pon p processors."
- Reduce communication complexity: Low communication complexity \Rightarrow good on slow communication networks (e.g. Grid-Computing / Clusters).
Scalable Communication: More processors \Rightarrow less communication
- Reduce latency: Sending a single message to another processor (or reading a single byte from shared memory) incurs overhead \Rightarrow "Hide" latency by transferring large blocks.

Goals when designing parallel algorithms

- Work-Optimality: "Plain computation time of fastest sequential algorithm can be divided by p on p processors."
- Reduce communication complexity: Low communication complexity \Rightarrow good on slow communication networks (e.g. Grid-Computing / Clusters).
Scalable Communication: More processors \Rightarrow Iess
communication
- Reduce Iatency: Sending a single message to another processor (or reading a single byte from shared memory) incurs overhead \Rightarrow "Hide" latency by transferring large blocks.

Goals when designing parallel algorithms

- Work-Optimality: "Plain computation time of fastest sequential algorithm can be divided by p on p processors."
- Reduce communication complexity: Low communication complexity \Rightarrow good on slow communication networks (e.g. Grid-Computing / Clusters).
Scalable Communication: More processors \Rightarrow less communication
- Reduce Iatency: Sending a single message to
another processor (or reading a single byte from shared memory) incurs overhead \Rightarrow "Hide" latency by transferring large blocks.

Goals when designing parallel algorithms

- Work-Optimality: "Plain computation time of fastest sequential algorithm can be divided by p on p processors."
- Reduce communication complexity: Low communication complexity \Rightarrow good on slow communication networks (e.g. Grid-Computing / Clusters).
Scalable Communication: More processors \Rightarrow less communication
- Reduce latency: Sending a single message to another processor (or reading a single byte from shared memory) incurs overhead \Rightarrow "Hide" latency by transferring large blocks.

BSP Algorithms

Bulk-Synchronous Parallelism

Model for parallel computation:
嘈 L. G. Valiant.
A bridging model for parallel computation. Communications of the ACM, 33:103-111, 1990.

Main ideas:

- p processors working asynchronously
- Can communicate using g operations to transmit one element of data
- Can synchronise using I sequential operations.

BSP Algorithms

Bulk-Synchronous Parallelism

- Computation proceeds in supersteps
- Communication takes place at the end of each superstep
- Between supersteps, barrier-style synchronisation takes place

BSP Algorithms

Bulk-Synchronous Parallelism
Superstep s has computation cost w_{s} and communication $h_{s}=\max \left(h_{s}^{\text {in }}, h_{s}^{\text {out }}\right)$.

When there are S supersteps:
\Rightarrow Computation work

$$
W=\sum_{1 \leqslant s \leqslant s} W_{S}
$$

\Rightarrow Communication

$$
H=\sum_{1 \leqslant s \leqslant s} h_{s}
$$

Formula for running time: $\mathrm{T}=\mathrm{W}+\mathrm{g} \cdot \mathrm{H}+\mathrm{I} \cdot \mathrm{S}$.

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Basic BSP Algorithms

- Applicable for dynamic programming with grid-dag data-dependencies
- Can partition into p^{2} boxes and proceed in wavefronts
- $2 p-1$ supersteps

Basic BSP Algorithms

- Applicable for dynamic programming with grid-dag data-dependencies
- Can partition into p^{2} boxes and proceed in wavefronts
- $2 \mathrm{p}-1$ supersteps

Basic BSP Algorithms

Parallel Prefix

Definition (Parallel Prefix)

Given n values $x_{1}, x_{2}, \ldots, x_{n}$ and an associative operator \oplus, compute the values $x_{1}, x_{1} \oplus x_{2}, x_{1} \oplus x_{2} \oplus x_{3}$, $\ldots, \oplus_{i=1,2, \ldots, n} x_{i}$.

Fact. . .

Under some natural assumptions, we can carry out a parallel prefix operation over n elements on a BSP computer with p processors using $W=O\left(\frac{n}{p}\right), H=O(p)$ and $\mathrm{S}=\mathrm{O}(1)$.

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

The LCS Problem

Definition (Input data)

Let $x=x_{1} x_{2} \ldots x_{m}$ and $y=y_{1} y_{2} \ldots y_{n}$ be two strings on an alphabet Σ.

Definition (Subsequences)

A subsequence u of x : u can be obtained by deleting zero or more elements from x.

Definition (Longest Common Subsequences)

An $\operatorname{LCS}(x, y)$ is any string which is subsequence of both x and y and has maximum possible length. Length of these sequences: $\operatorname{LLCS}(x, y)$.

The Semi-local LCS Problem

Definition (Substrings)

A substring of any string x can be obtained by removing zero or more characters from the beginning and/or the end of x.

Definition (Highest-score matrix)

The element $A(i, j)$ of the LCS highest-score matrix of two strings x and y gives the LLCS of $y_{i} \ldots y_{j}$ and x.

Definition (Semi-local LCS)

Solutions to the semi-local LCS problem are represented by a (possibly implicit) highest-score matrix $A(i, j)$.

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Parallel algorithms for LCS computation

Parallel algorithms for LCS computation

Parallel algorithms for LCS computation

String-Substring, Prefix-Suffix LCS

$\mathrm{O}\left(\frac{\mathfrak{n}^{2} \log n}{\mathrm{p}}\right)$	$\mathrm{O}\left(\frac{\mathfrak{n}^{2} \log p}{\mathrm{p}}\right)$	$\mathrm{O}(\log p)$	$[$ Alves+'02]
$\mathrm{O}\left(\frac{\mathrm{n}^{2}}{\mathrm{p}}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{p})$	$[$ McColl'95]+

[Alves+'06], [Tiskin'05]
$O\left(\frac{n^{2}}{p}\right)$
$O\left(\frac{n \log p}{\sqrt{p}}\right)$
$O(\log p)$
NEW

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

LCS grid dags and highest-score matrices

- LCS Problem can be represented as longest path problem in a Grid DAG
- String-Substring LCS Problem \Rightarrow
$A(i, j)=$ length of longest path from $(0, i)$ to (n, j) (top to bottom).

Example

Extended grid dag

Infinite extension of the LCS grid dag, outside the core area, everything matches:

The extended highest-score matrix is now defined on indices $[-\infty,+\infty] \times[-\infty,+\infty]$.

Critical points

Definition (Critical Point)

Odd half-integer point ($i-\frac{1}{2}, j+\frac{1}{2}$) is critical iff. $A(i, j)+1=A(i-1, j)=A(i, j+1)=A(i-1, j+1)$.

Theorem (Schmidt'95, Alves+'06, Tiskin'05)
(1) We can represent a the whole extended highest-score matrix by a finite set of such critical points.
(2) Assuming w.l.o.g. input strings of equal length n, there are $\mathrm{N}=2 \mathrm{n}$ such critical points that implicitly represent the whole score matrix.
(3) There is an algorithm to obtain these points in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Critical points

Definition (Critical Point)

Odd half-integer point ($i-\frac{1}{2}, j+\frac{1}{2}$) is critical iff. $A(i, j)+1=A(i-1, j)=A(i, j+1)=A(i-1, j+1)$.

Theorem (Schmidt'95, Alves+'06, Tiskin'05)

(1) We can represent a the whole extended highest-score matrix by a finite set of such critical points.
(2) Assuming w.l.o.g. input strings of equal length n, there are $\mathrm{N}=2 \mathrm{n}$ such critical points that implicitly represent the whole score matrix.
(3) There is an algorithm to obtain these points in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Highest-score matrices

Example (Explicit highest-score matrix)

Highest-score matrices

Example (Explicit highest-score matrix)

Example (Implicit score matrix)

$$
\begin{gathered}
\left(-\frac{7}{2}, \frac{5}{2}\right),\left(-\frac{5}{2}, \frac{3}{2}\right) \cdot\left(-\frac{3}{2}, \frac{11}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}\right), \\
\left(\frac{1}{2}, \frac{13}{2}\right),\left(\frac{3}{2}, \frac{9}{2}\right),\left(\frac{5}{2}, \frac{7}{2}\right),\left(\frac{1}{2}, \frac{15}{2}\right)
\end{gathered}
$$

Additional definitions

Definition (Integer ranges)

We denote the set of integers $\{i, i+1, \ldots, j\}$ as $[i: j]$.

Definition (Odd half-integers)

We denote half-integer variables using a ${ }^{\wedge}$, and denote the set of half-integers $\left\{i+\frac{1}{2}, i+\frac{3}{2}, \ldots, j-\frac{1}{2}\right\}$ as $\langle i: j\rangle$.

Querying highest-score matrix entries

Theorem (Tiskin'05)
If $\mathrm{d}(\mathrm{i}, \mathfrak{j})$ is the number of critical points $(\hat{\imath}, \hat{\jmath})$ in the extended score matrix with $\mathfrak{i}<\hat{\imath}$ and $\hat{\jmath}<\mathfrak{j}$, then
$A(i, j)=\mathfrak{j}-\mathfrak{i}-d(i, j)$.
Definition (Density and distribution matrices)
The elements $d(i, j)$ form a distribution matrix over the entries of a density (permutation) matrix D which uses odd half-integer indices and has nonzeros at all critical points (\hat{i}, \hat{j}) in the extended highest-score matrix:

Querying highest-score matrix entries

Theorem (Tiskin'05)

If $\mathrm{d}(\mathrm{i}, \mathfrak{j})$ is the number of critical points $(\hat{\imath}, \hat{\jmath})$ in the extended score matrix with $\mathfrak{i}<\hat{\imath}$ and $\hat{\jmath}<\mathfrak{j}$, then $A(i, j)=j-i-d(i, j)$.

Definition (Density and distribution matrices)

The elements $d(i, j)$ form a distribution matrix over the entries of a density (permutation) matrix D which uses odd half-integer indices and has nonzeros at all critical points ($\hat{\imath}, \hat{\jmath}$) in the extended highest-score matrix:

$$
d(i, j)=\sum_{(\hat{\imath}, \hat{\jmath}) \in\langle i: N\rangle \times\langle 0: j\rangle} D(\hat{\imath}, \hat{\jmath})
$$

"Seaweed" chart

Critical points can be drawn as "seaweeds" in the grid graph

"Seaweed" chart

Critical points can be drawn as "seaweeds" in the grid graph

$$
\begin{aligned}
& d(1,4)=1 \\
& A(1,4)=4-1-1=2
\end{aligned}
$$

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Sequential highest-score matrix multiplication

Algorithm, Tiskin'05

Given the distribution matrices d_{A} and d_{B} for two adjacent blocks of equal height M and width N in the grid dag, we can compute the distribution matrix d_{C} for the union of these blocks in $\mathrm{O}\left(\mathrm{N}^{1.5}+\mathrm{M}\right)$.

Sequential highest-score matrix multiplication

Score matrix multiplication: Two parts

"Trivial part" $(O(M))$:

Sequential highest-score matrix multiplication

Score matrix multiplication: Two parts
"Nontrivial part" ($\mathrm{O}\left(\mathrm{N}^{1.5}\right)$):

Nontrivial part

- Non-trivial part can be seen as (min,+) matrix product ($\mathrm{d}_{\mathrm{A}|\mathrm{B}| \mathrm{C}}$ are now the nontrivial parts of the corresponding distribution matrices):

$$
d_{C}(i, k)=\min _{j}\left(d_{A}(i, j)+d_{B}(j, k)\right)
$$

- Explicit form, naive algorithm: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Explicit form, algorithm that uses score matrix properties: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Implicit form, divide-and-conquer: $\mathrm{O}\left(\mathrm{n}^{1.5}\right)$

Divide-and-conquer multiplication

c-blocks and relevant nonzeros

Divide-and-conquer multiplication

Splitting a given set of relevant nonzeros in D_{A} and D_{B} into two sets at a position $j \in[0: N]$, we get the number of relevant nonzeros in $D_{\mathcal{A}}$ up to column $\mathfrak{j}-\frac{1}{2}$, and the number of relevant nonzeros in D_{B} starting at row $j+\frac{1}{2}$:

Definition (δ-sequences)

Divide-and-conquer multiplication

δ-sequences and j-blocks

Definition (j-blocks)

Contiguous sets of \mathfrak{j} called " j-blocks", corresponding to a value of $d \in[-h: h]$, are defined as $\mathcal{J}^{\square}(\mathrm{d})=\left\{j \mid \delta_{\mathrm{A}}^{\mathrm{D}}(\mathrm{j})-\delta_{\mathrm{B}}^{\mathrm{D}}(\mathrm{j})=\mathrm{d}\right\}$.

- A j-block need not exist for every d.
- Small C-blocks \Rightarrow few j-blocks, as the number of relevant nonzeros decreases with the block size.
- Can determine the j-blocks by a scan of the relevant nonzeros.

Divide-and-conquer multiplication More on j-blocks

Example (j-blocks)

Definition (Δ-sequences)
δ 's don't change inside a i-block \Rightarrow

$$
\begin{aligned}
\Delta_{A}^{\square}(d) & =\underset{j \in \mathcal{J} \square(d)}{\operatorname{any}} \delta_{\mathrm{B}}^{\square}(j) \\
\Delta_{\mathrm{B}}^{\square}(\mathrm{d}) & =\underset{i}{\operatorname{any}} \delta_{\mathrm{B}}^{\square}(j)
\end{aligned}
$$

Divide-and-conquer multiplication

Example (j-blocks)

Definition (Δ-sequences)
र's don't change inside a j-block \Rightarrow

$$
\begin{aligned}
\Delta_{\mathcal{A}}^{\square}(\mathrm{d}) & =\operatorname{any}_{\mathfrak{j} \in \mathcal{J}^{\square}(\mathrm{d})} \delta_{\mathrm{B}}^{\square}(\mathfrak{j}) \\
\Delta_{\mathrm{B}}^{\square}(\mathrm{d}) & =\operatorname{any}_{\mathfrak{j} \in \mathcal{J}^{\square}(\mathrm{d})} \delta_{\mathrm{B}}^{\square}(\mathfrak{j})
\end{aligned}
$$

Divide-and-conquer multiplication

Definition (local minima)

The sequence

$$
M^{\square}(d)=\min _{j \in \mathcal{J} \square}(d)\left(d_{A}\left(i_{0}, j\right)+d_{B}\left(j, k_{0}\right)\right)
$$

contains the minimum of $d_{A}\left(i_{0}, \mathfrak{j}\right)+d_{B}\left(j, k_{0}\right)$ in every j-block.
! We can have different values of M in one j-block. We can use M's and Δ 's to compute the number of nonzeros in a C-block.

Divide-and-conquer multiplication

Sequences M for every C-subblock can be computed in $\mathrm{O}(\mathrm{h})$:

$$
\begin{aligned}
& M^{\square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d}), \\
& M^{\square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d})+\bar{\Delta}_{\mathrm{B}}^{\square}(\mathrm{d}), \\
& M^{\square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d})+\bar{\Delta}_{A}^{\mathrm{E}}(\mathrm{~d}), \\
& M^{\square \square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d})+\bar{\Delta}_{A}^{\mathrm{Q}}(\mathrm{~d})+\bar{\Delta}_{\mathrm{B}}^{\mathbb{Q}}(\mathrm{d})
\end{aligned}
$$

having $\bar{\Delta}_{A}^{\left(i^{\prime}, k^{\prime}, \frac{h}{2}\right)}(\mathrm{d})-\bar{\Delta}_{\mathrm{B}}^{\left(\mathrm{i}^{\prime}, \mathrm{k}^{\prime}, \frac{h}{2}\right)}(\mathrm{d})=\mathrm{d}^{\prime}$ with $\mathrm{d}^{\prime} \in\left[-\frac{h}{2}: \frac{h}{2}\right]$.

Divide-and-conquer multiplication

- Sequences $\Delta_{A}\left(d^{\prime}\right)$ and $\Delta_{B}\left(d^{\prime}\right)$ can also be determined in $O(h)$ by a scan of the relevant nonzeros for each subblock.
- Knowing $\Delta_{A}\left(d^{\prime}\right), \Delta_{B}\left(d^{\prime}\right)$ and $M\left(d^{\prime}\right)$ for each subblock, we can continue the recursion in every subblock.
- The recursion terminates when N C-blocks of size 1 are left.

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Simple parallel algorithm

We can use the described multiplication procedure to derive a parallel algorithm that uses $\mathrm{W}=\mathrm{O}\left(\frac{\mathfrak{n}^{2}}{\mathrm{p}}\right)$, $H=O(n \log p)$ and $S=O(\log p):$

1

2

3

What can we improve?

- $\mathrm{O}(\mathrm{N})$ data elements need to be transferred in every step of the merging tree.
- For very long strings, this is not desirable.
- To improve on the communication, parallelise the non-trivial step of the multiplication procedure.
- The goal is to decrease communication necessary for score-matrix multiplication to $\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$.
\Rightarrow this achieves scalable communication

Basic algorithm idea

- Start the recursion at a point where there are p C-blocks.
- This is at level $\frac{1}{2} \log p$.
- Precompute and distribute the required sequences Δ and M for each C-block in parallel.
- Every C-block has size $h=\frac{N}{\sqrt{p}}$, and hence requires sequences with $O\left(\frac{\mathrm{~N}}{\sqrt{p}}\right)$ values.
- After these sequences have been precomputed and redistributed, we can use the sequential algorithm to finish the computation.

Assumptions

Assume that:

- \sqrt{p} is an integer.
- Every processor has unique identifier q with $0 \leqslant q<p$.
- Every processor q corresponds to exactly one location $\left(q_{x}, q_{y}\right) \in[0: \sqrt{p}-1] \times[0: \sqrt{p}-1]$.
- Initial distribution of nonzeros in D_{A} and D_{B} is assumed to be even among all processors.

First Step

- Redistribute the nonzeros to strips of width $\frac{N}{p}$
- Send all nonzeros $(\hat{\imath}, \hat{\jmath})$ in D_{A} and $(\hat{\jmath}, \hat{k})$ in D_{B} to processor
$\left\lfloor\left(\hat{\jmath}-\frac{1}{2}\right) \cdot p / N\right\rfloor$.
- Possible in one superstep using communication $\mathrm{O}\left(\frac{\mathrm{N}}{\mathrm{p}}\right)$.

Precomputing M

Compute the elementary ($\mathrm{min},+$) products $\mathrm{d}_{\mathrm{A}}\left(\mathrm{o}_{\mathrm{x}}, \mathrm{j}\right)+$ $\mathrm{d}_{\mathrm{B}}\left(\mathrm{j}, \mathrm{o}_{\mathrm{y}}\right)$ along $\mathrm{j} \in[0: \mathrm{N}]$.

Precomputing M

Every processor holds all $D_{A}(\hat{\imath}, \hat{\jmath})$ and all $D_{B}(\hat{\jmath}, \hat{k})$ for $\hat{\jmath} \in$ $\left\langle q \cdot \frac{N}{p}:(q+1) \cdot \frac{N}{p}\right\rangle$.

Precomputing M

Can compute the values $d_{A}\left(o_{x}, \mathfrak{j}\right)$ and $d_{B}\left(\mathfrak{j}, o_{y}\right)$ by using parallel prefix/suffix.

Precomputing M

After prefix and suffix computations, every processor holds N / p values $d_{A}\left(o_{x}, \mathfrak{j}\right)+d_{B}\left(\mathfrak{j}, o_{y}\right)$ for $\mathfrak{j} \in\left[q \cdot \frac{N}{\sqrt{p}}\right.$: $\left.(q+1) \cdot \frac{\mathrm{N}}{\sqrt{\mathrm{p}}}\right]$.

Redistribution Step

p vertical strips $\frac{N}{p}$ nonzeros each

$\sqrt{\mathrm{p}}$ horizontal strips with $\frac{\mathrm{N}}{\sqrt{\mathrm{p}}}$ nonzeros each

Analysis

- Computational work bounded by the sequential recursion:
$\mathrm{W}=\mathrm{O}\left((\mathrm{N} / \sqrt{\mathfrak{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{N}^{1.5} / \mathrm{p}^{0.75}\right)$
- Every processor holds $O(N / p)$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.

- $\mathrm{S}=\mathrm{O}(1)$ (parallel prefix)

Analysis

- Computational work bounded by the sequential recursion:

$$
\mathrm{W}=\mathrm{O}\left((\mathrm{~N} / \sqrt{\mathrm{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{~N}^{1.5} / \mathrm{p}^{0.75}\right)
$$

- Every processor holds $\mathrm{O}(\mathrm{N} / \mathrm{p})$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.
- $S=O(1)$ (parallel prefix)

Analysis

- Computational work bounded by the sequential recursion:

$$
\mathrm{W}=\mathrm{O}\left((\mathrm{~N} / \sqrt{\mathrm{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{~N}^{1.5} / \mathrm{p}^{0.75}\right)
$$

- Every processor holds $\mathrm{O}(\mathrm{N} / \mathrm{p})$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.
$\Rightarrow \mathrm{H}=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}}+\mathrm{p}+\mathrm{N} / \sqrt{\mathrm{p}})=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ (if $N / \sqrt{p}>p \quad \rightarrow N>p^{1.5}$)
- $S=O(1)$ (parallel prefix)

Analysis

- Computational work bounded by the sequential recursion:

$$
\mathrm{W}=\mathrm{O}\left((\mathrm{~N} / \sqrt{\mathrm{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{~N}^{1.5} / \mathrm{p}^{0.75}\right)
$$

- Every processor holds $\mathrm{O}(\mathrm{N} / \mathrm{p})$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.
$\Rightarrow \mathrm{H}=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}}+\mathrm{p}+\mathrm{N} / \sqrt{\mathrm{p}})=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ (if $N / \sqrt{p}>p \quad \rightarrow N>p^{1.5}$)
- $S=O(1)$ (parallel prefix)

Outline

(1) Introduction

- Parallel computation
- Basic BSP Algorithms
- String comparison
- Literature
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Quadtree Merging

- First, compute scores for a regular grid of p sub-dags of size $n / \sqrt{p} \times n / \sqrt{p}$
- Then merge these in a quadtree-like scheme using parallel score-matrix multiplication:

Analysis

- Quadtree has $\frac{1}{2} \log _{2} p$ levels
- On level $l, 0 \leqslant l \leqslant \frac{1}{2} \log _{2} p$, we have
- $p_{l}=\frac{p}{4^{l}}$ (number of processors that work together on one merge)
- $\mathrm{N}_{\mathrm{l}}=\frac{\mathrm{N}}{2^{\mathrm{l}}}$ (block size of merge)

$$
\begin{aligned}
& \Rightarrow w_{l}=\mathrm{O}\left(\frac{\left(\frac{\mathrm{~N}}{2^{l}}\right)^{1.5}}{\left(\frac{\mathrm{p}}{4^{l}}\right)^{0.75}}\right)=\mathrm{O}\left(\frac{\mathrm{~N}^{1.5}}{\mathrm{p}^{0.75}}\right) \\
& \Rightarrow \mathrm{h}_{\mathrm{l}}=\mathrm{O}\left(\frac{\frac{\mathrm{~N}}{2^{l}}}{\left(\frac{p}{4 l}\right)^{0.5}}\right)=\mathrm{O}\left(\frac{\mathrm{~N}}{\mathrm{p}^{0.5}}\right)
\end{aligned}
$$

Analysis

- Quadtree has $\frac{1}{2} \log _{2} p$ levels

Hence, we get

- work $\mathrm{W}=\mathrm{O}\left(\frac{\mathfrak{n}^{2}}{\mathrm{p}}+\frac{\mathrm{N}^{1.5} \log \mathrm{p}}{\mathrm{p}^{0.75}}\right)=\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{p}\right)$
(assuming that $n \geqslant p^{2}$),
- communication $\mathrm{H}=\mathrm{O}\left(\frac{n \log p}{\sqrt{p}}\right)$, and
- $S=O(\log p)$ supersteps.

Summary

This talk was about. . .

- ... an introduction to parallel algorithms using BSP,
- ... an overview of some semilocal string comparison algorithms,
- ... a parallel algorithm for semilocal string comparison that is communication efficient and work-optimal, and is asymptotically better than even global LCS computation.

Outlook

Algorithmic:

- Score matrix multiplication can also be applied to create a scalable algorithm for the iongest increasing subsequence problem.
- Adapt this algorithm for computing edit-distances.
- Study different problems from a BSP perspective.

Algorithm Engineering

- Implement this algorithm using BSP-Tools, study load-balancing strategies
- Implement BSP tools that allow easier creation of hierarchical BSP algorithms like the one shown here
- Compare performance between "old-style" BSP on MPI and newer approaches, like skeletons and GASNet-based languages.
- Library of BSP algorithmic templates.

Thank you! Any questions?

Seaweed-algorithm

Seaweed-Algorithm on a single cell level:

Seaweed-algorithm

Seaweed-Algorithm on a single cell level:

We know what to do when there is a match. . .

Seaweed-algorithm

Seaweed-Algorithm on a single cell level:

No match \Rightarrow check for double crossing...

