Peter Krusche

Department of Computer Science
University of Warwick

AFM Seminar, 23rd of April, 2007

«Or «Fr «=)>r 4

Outline

e Introduction
@ Parallel computation
@ Basic BSP Algorithms
@ String comparison
@ Literature

9 Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

e The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

e Introduction
@ Parallel computation
@ Basic BSP Algorithms
@ String comparison
@ Literature

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

Q The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

Why parallel algorithms?

... parallelism makes things more complicated. ..

But:

@ everyone has a parallel computer today: Dual-Core
Laptops, Playstation 3, ...

@ modern supercomputing architectures have more
processors than ever

(BlueGene/L: 131072, Grid-Computing: possibly
millions)

Goals when designing parallel algorithms

@ Work-Optimality: “Plain computation time of
fastest sequential algorithm can be divided by p on
p processors.”

Goals when designing parallel algorithms

@ Work-Optimality: “Plain computation time of
fastest sequential algorithm can be divided by p on
p processors.”

@ Reduce communication complexity: Low
communication complexity = good on slow
communication networks (e.g. Grid-Computing /
Clusters).

Goals when designing parallel algorithms

@ Work-Optimality: “Plain computation time of
fastest sequential algorithm can be divided by p on
p processors.”

@ Reduce communication complexity: Low
communication complexity = good on slow
communication networks (e.g. Grid-Computing /
Clusters).

Scalable Communication: More processors = less
communication

Goals when designing parallel algorithms

@ Work-Optimality: “Plain computation time of
fastest sequential algorithm can be divided by p on
p processors.”

@ Reduce communication complexity: Low
communication complexity = good on slow
communication networks (e.g. Grid-Computing /
Clusters).

Scalable Communication: More processors = less
communication

@ Reduce latency: Sending a single message to
another processor (or reading a single byte from
shared memory) incurs overhead = “Hide"” latency
by transferring large blocks.

BSP Algorithms

Bulk-Synchronous Parallelism

Model for parallel computation:
[4 L.G. Valiant.

A bridging model for parallel computation.
Communications of the ACM, 33:103-111, 1990.

Main ideas:
@ p processors working asynchronously

@ Can communicate using g operations to transmit
one element of data

@ Can synchronise using | sequential operations.

BSP Algorithms

Bulk-Synchronous Parallelism

@ Computation proceeds in supersteps

@ Communication takes place at the end of each
superstep

@ Between supersteps, barrier-style synchronisation
takes place

Superstep
N

’ Barrier-Synchronization ‘
’ Barrier-Synchronization ‘

Computation Communication Computation Communication

BSP Algorithms

Bulk-Synchronous Parallelism

Superstep s has computation cost ws and communica-
tion hs = max(hl", h2").

When there are S supersteps:
= Computation work

W:ZWS

1<s<S

H:Zhs

1<s<S

= Communication

Formula for running time: T=W+g-H+1-S.

e Introduction
@ Parallel computation
@ Basic BSP Algorithms
@ String comparison
@ Literature

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

Q The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

@ Applicable for dynamic

programming with
grid-dag

data-dependencies
@ Can partition into p?

boxes and proceed in
wavefronts

@ 2p — 1 supersteps

AN
AN
NN N
AN
AN
NN
AN
AN
NN N
AN
WA

Basic BSP Algorithms

Grid dag computation

@ Applicable for dynamic
programming with
grid-dag
data-dependencies

@ Can partition into p?
boxes and proceed in
wavefronts

@ 2p — 1 supersteps

Basic BSP Algorithms

Parallel Prefix

Definition (Parallel Prefix)

Given n values x1, x5, ..., x, and an associative

operator @, compute the values x1, x1 ® x2, x1 ® x2 ® x3,
o Dic1,2,..n X

Fact. ..

Under some natural assumptions, we can carry out a
parallel prefix operation over n elements on a BSP
computer with p processors using W = O(%), H=0(p)
and S =0(1).

e Introduction
@ Parallel computation
@ Basic BSP Algorithms
@ String comparison
@ Literature

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

Q The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

The LCS Problem

Definition (Input data)

Let x = x1x2...x;m and y =y1y> ...yn be two strings on
an alphabet X.

Definition (Subsequences)

A subsequence u of x: u can be obtained by deleting
zero or more elements from x.

Definition (Longest Common Subsequences)

An LCS (x, y) is any string which is subsequence of both
x and y and has maximum possible length. Length of
these sequences: LLCS (x, y).

The Semi-local LCS Problem

Definition (Substrings)

A substring of any string x can be obtained by removing
zero or more characters from the beginning and/or the
end of x.

Definition (Highest-score matrix)

The element A(i,j) of the LCS highest-score matrix of
two strings x and y gives the LLCS of y;...y; and x.

Definition (Semi-local LCS)

Solutions to the semi-local LCS problem are represented
by a (possibly implicit) highest-score matrix A(i,j).

e Introduction
@ Parallel computation
@ Basic BSP Algorithms
@ String comparison
@ Literature

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

Q The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

Parallel algorithms for LCS computation

w H S References
Global LCS
n O(n) O(p) [McColl'95]+

[Wagner & Fischer'74]

Parallel algorithms for LCS computation

w H S References

String-Substring LCS

) O(Cpl/Cnlogp) O(logp) [Alves+'03]
) O(nlogp) O(logp) [Tiskin’05],
[Alves+:06]

Parallel algorithms for LCS computation

w H S References
Global LCS
o) O(n) op) [McColl'951+

[Wagner & Fischer'74]

String-Substring, Prefix-Suffix LCS

o(Mloan) g(nflogr) g(logyp) [Alves+'02]
o) o(m) O(p) [McColl’95]+
[Alves+’'06], [Tiskin’05]
o) o(™ogr) O(logp) NEW

Q Introduction

Parallel computation
Basic BSP Algorithms
String comparison
Literature

®

® 66 ¢

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

o The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

LCS grid dags and highest-score matrices

LCS Problem can be
represented as longest
path problem in a Grid
DAG

String-Substring LCS
Problem =

A(1,j) = length of
longest path from (0, 1)
to (n,j) (top to bottom). c

Extended grid dag

Infinite extension of the LCS grid dag, outside the core
area, everything matches:

The extended highest-score matrix is now defined on
indices [—oo0, +00] X [—00, +o0].

Odd half-integer point (i — 3,j + 1) is critical iff.

ALN)+1=A(1-1,j))=A1j+1)=A@1—-1,j+1).

Critical points

Definition (Critical Point)

Odd half-integer point (i— Sk %) is critical iff.
ALj)+1=A1—-1,)=A{j+1)=A(1—-1,j+1).

Theorem (Schmidt’95, Alves+'06, Tiskin’05)

@ We can represent a the whole extended
highest-score matrix by a finite set of such critical
points.

@ Assuming w.l.0.g. input strings of equal length n,
there are N = 2n such critical points that implicitly
represent the whole score matrix.

© There is an algorithm to obtain these points in time
O(n?).

Highest-score matrices

ﬂluJ

NS < S ShS SIS S
| e |

© < << 4H4 m!m m
| @ -

N < SIS MM N AN
L T
MM A
e I

f o

Mm < <5<t mMm o Nl Oln
l = =

Highest-score matrices

r—=n
NS ST IS
1 e |
F— =

644_44H43|"33
[T
N < SIS MM N AN
R
TN M HIH
e I
SIS I oW WNIE o!
| R

Additional definitions

Definition (Integer ranges)
We denote the set of integers {i,1+1,...,j} as [i:jl.

Definition (Odd half-integers)

We denote half-integer variables using a *, and denote
the set of half-integers {i + 3,i+3,...,j — 3} as (i:j).

Querying highest-score matrix entries

Theorem (Tiskin’05)

If d(i,j) is the number of critical points (1,7) in the
extended score matrix with i <1 andj < j, then

Querying highest-score matrix entries

Theorem (Tiskin’05)

If d(i,j) is the number of critical points (1,7) in the
extended score matrix with i <1 andj < j, then

Definition (Density and distribution matrices)

The elements d(i,j) form a distribution matrix over the
entries of a density (permutation) matrix D which uses
odd half-integer indices and has nonzeros at all critical
points (1,7) in the extended highest-score matrix:

dii,j)=) D@j)

(1,9) € (i:N) x (0:5)

graph

Critical points can be drawn as “seaweeds” in the grid

graph

Critical points can be drawn as “seaweeds” in the grid

Q Introduction

Parallel computation
Basic BSP Algorithms
String comparison
Literature

®

® 66 ¢

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

o The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

Sequential highest-score matrix multiplication

Algorithm, Tiskin’05

Given the distribution matrices d5 and dg for two
adjacent blocks of equal height M and width N in the
grid dag, we can compute the distribution matrix d¢ for
the union of these blocks in O(N15 + M).

Sequential highest-score matrix multiplication

Score matrix multiplication: Two parts

“Trivial part” (O(M)):

4 -3 2 1 0 1 2 3 4 5 6 7 8

[[J L L
‘~-.‘~-- e —— b

YRS R

e

M s ST
(RN S L SN | BN N N N B A N B
[J [J

Sequential highest-score matrix multiplication

Score matrix multiplication: Two parts

“Nontrivial part” (O(N1)):

Nontrivial part

@ Non-trivial part can be seen as (min, +) matrix
product (dag|c are now the nontrivial parts of the
corresponding distribution matrices):

de(i, k) = mjin(dA(i,i) +dg(j, kJ)

@ Explicit form, naive algorithm: O(n?3)

@ Explicit form, algorithm that uses score matrix
properties: O(n?)

@ Implicit form, divide-and-conquer: O(n!-)

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

Da

Dp
.'\ A N
N e\ N\
\e \‘\.
N N N ()
N . Y Y

N I
o\.\ ! ! |
N -_+_'|__|__
&

N ! ! |
L, -4 q--
S [
JEEEN | L

----L-+-

[
| | \
Dc

Divide-and-conquer multiplication

d-sequences and relevant nonzeros

Splitting a given set of relevant nonzeros in D and Dg
into two sets at a position j € [0 : N], we get the number
of relevant nonzeros in DA up to column j — % and the

number of relevant nonzeros in Dy starting at row j + %:

Definition (6-sequences)

Da|.

/e

Divide-and-conquer multiplication

d-sequences and j-blocks

Definition (j-blocks)

Contiguous sets of j called “j-blocks”, corresponding to
a value of d € [~h: hl, are defined as

Jd) ={ | 85()—85() = d}.

@ A j-block need not exist for every d.

@ Small C-blocks = few j-blocks, as the number of
relevant nonzeros decreases with the block size.

@ Can determine the j-blocks by a scan of the
relevant nonzeros.

DA

Divide-and-conquer multiplication

More on j-blocks

Definition (A-sequences)

d's don’t change inside a j-block =

AR (d)

Ag(d)

any 83(j)
jego(d)

any 85(j)
jego(d)

Divide-and-conquer multiplication

Local minima

Definition (local minima)
The sequence

MP(d) = min (dalio,j) + ds(j, ko))
jeJgu(d)

contains the minimum of da (ig,j) + dg(j, ko) in every
j-block.

I We can have different values of M in one j-block.

We can use M’s and A’s to compute the number of
nonzeros in a C-block.

Divide-and-conquer multiplication

Recursive step

Sequences M for every C-subblock can be computed in
O(h):

ME (d) = mdin ME(d),

ME (d') = min M7(d) + A (d),

Mo (d) = min MP(d) + AR (d),

M® (d) = mdin MB(d) + AR (d) + AR (d)

. ik, 3) ik,
having A, (d) —Ag

&
\
~
=
£
>
~
m
T
Nl
I

Divide-and-conquer multiplication

Recursive step

@ Sequences Ax(d’) and Ag(d’) can also be
determined in O(h) by a scan of the relevant
nonzeros for each subblock.

@ Knowing Aa(d’), Ag(d’) and M(d’) for each
subblock, we can continue the recursion in every
subblock.

@ The recursion terminates when N C-blocks of size 1
are left.

Q Introduction

Parallel computation
Basic BSP Algorithms
String comparison
Literature

®

® 66 ¢

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

e The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

Simple parallel algorithm

We can use the described multiplication procedure to
derive a parallel algorithm that uses W = O(%z),
H=0(nlogp)and S =0(logp):

What can we improve?

@ O(N) data elements need to be transferred in every
step of the merging tree.

@ For very long strings, this is not desirable.

@ To improve on the communication, parallelise the
non-trivial step of the multiplication procedure.

@ The goal is to decrease communication necessary
for score-matrix multiplication to O(N/,/p).

= this achieves scalable communication

Basic algorithm idea

@ Start the recursion at a point where there are p
C-blocks.

@ This is at level 3 logp.

@ Precompute and distribute the required sequences
A and M for each C-block in paraIIeI

@ Every C-block has size h = f, and hence requires
sequences with O(%) values.
@ After these sequences have been precomputed and

redistributed, we can use the sequential algorithm
to finish the computation.

Assumptions

Assume that:

@ /pis an integer.

@ Every processor has unique identifier g with
0<qg<vp.

@ Every processor g corresponds to exactly one
location (qx,qy) €[0:p -1 x[0:/p—1].

@ Initial distribution of nonzeros in DA and Dg is
assumed to be even among all processors.

First Step

@ Redistribute the
nonzeros to strips
of width %

@ Send all nonzeros
(1,7) in DA and
(3, k) in Dg to
processor
[G—3) p/NJ.

@ Possible in one

superstep using C _ N
communication p vertical strips JP
o) XN nonzeros each

P b

Precomputing M

Compute the elementary (min,+) products da(o,j) +
dg(j,oy) alongj € [0: NJ.

Precomputing M

Every processor holds all DA (%,7) and all Dg(j, k) for j
(@-%:(q+1)-).

Precomputing M

Can compute the values da(oy,j) and dg(j, oy) by using
parallel prefix/suffix.

Precomputing M

After prefix and suffix computations, every processor

holds N/p values da(oy,j) + dg(j,oy) for j € [q - % :

NG
(q+1)- 5.

Redistribution Step

. . . N
p vertical strips N nonzeros each v/ horizontal strips with v
P nonzeros each

@ Computational work bounded by the sequential
recursion:

W = O((N/ﬁ)l-S) — O(Nl's/p0'75)

Analysis

@ Computational work bounded by the sequential
recursion:

W = O((N/\/p)15) = O(NL3/p079)

@ Every processor holds O(N/p) nonzeros before
redistribution.

@ Every nonzero is relevant for ,/p C-blocks.

= O(N/,/p) communication for redistributing the
nonzeros.

Analysis

@ Computational work bounded by the sequential
recursion:

W = O((N/y/p)**) = O(N*2/p073)
@ Every processor holds O(N/p) nonzeros before
redistribution.

@ Every nonzero is relevant for ,/p C-blocks.

= O(N/,/p) communication for redistributing the
nonzeros.

= H=0(N/\/p+p+N/yp)=0(N//p)
(ifN/yp>p — N>pld)

Analysis

@ Computational work bounded by the sequential
recursion:

W = O((N/y/p)**) = O(N*2/p073)
@ Every processor holds O(N/p) nonzeros before
redistribution.

@ Every nonzero is relevant for ,/p C-blocks.

= O(N/,/p) communication for redistributing the
nonzeros.

= H=0(N/p+p+N/y/p)=0(N//p)
(ifN/yp>p — N>pld)
@ S =0(1) (parallel prefix)

Q Introduction

Parallel computation
Basic BSP Algorithms
String comparison
Literature

®

® 66 ¢

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

e The parallel algorithm

@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
it
u
N
¥l
i

Quadtree Merging

@ First, compute scores for a regular grid of p
sub-dags of size n/\/p x n/\/p

@ Then merge these in a quadtree-like scheme using
parallel score-matrix multiplication:

Analysis

@ Quadtree has 1 log, p levels

@ Onlevel 1, 0 <1< 3log, p, we have

@ p1 = 7y (number of processors that work together on one
merge)

e Ny =1} (block size of merge)

Analysis

@ Quadtree has 1 log, p levels

Hence, we get

@ work W = O(%2 + Nl]:’o,'%?p) =0(n?/p)

(assuming that n > p2),

: : - nlogp
@ communication H = O(NG), and

@ S =0(logp) supersteps.

Summary

This talk was about. ..
@ ...an introduction to parallel algorithms using BSP,

@ ...an overview of some semilocal string
comparison algorithms,

@ ...a parallel algorithm for semilocal string
comparison that is communication efficient and
work-optimal, and is asymptotically better than
even global LCS computation.

Outlook

Algorithmic:

@ Score matrix multiplication can also be applied to
create a scalable algorithm for the iongest
increasing subsequence problem.

@ Adapt this algorithm for computing edit-distances.
@ Study different problems from a BSP perspective.
Algorithm Engineering
@ Implement this algorithm using BSP-Tools, study
load-balancing strategies
@ Implement BSP tools that allow easier creation of
hierarchical BSP algorithms like the one shown here

@ Compare performance between “old-style” BSP on
MPI and newer approaches, like skeletons and
GASNet-based languages.

@ Library of BSP algorithmic templates.

Thank you!
Any questions?

Seaweed-Algorithm on a single cell level:

«0O» «Fr «=» «

it
it
u
N
¥l
i

Seaweed-Algorithm on a single cell level:

i

AN
N
j

j

v

We know what to do when there is a match. ..

Seaweed-Algorithm on a single cell level:

.
e E= == -=- L] [--
1 N 1 ks
1 1
: i : i
1 1
| i H i
-~ L -
: ~ -) -
j j
j j
o' . '
1<) 1>)

No match = check for double crossing...

u]
Q&

I

n
it
w
N)
Py
i)

	Introduction
	Parallel computation
	Basic BSP Algorithms
	String comparison
	Literature

	Sequential LCS algorithms
	Sequential semi-local LCS
	Divide-and-conquer semi-local LCS

	The parallel algorithm
	Parallel score-matrix multiplication
	Parallel LCS computation

	Conclusion
	
	

	Appendix
	Seaweed-algorithm

