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Outline

Motivation...
Study and compare the communication
characteristics and performance predictability of
‘BSP-style’ communication libraries.

Outline
1. The BSP Model

2. BSP Programming Libraries

3. Benchmarking

4. Performance and Predictability
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The BSP Model

The BSP model for parallel algorithms was used
with some slight adaptations.

The model has been adapted here to use seconds
instead of flops as a base unit for the running time:

• p identical processor/memory pairs (computing
nodes), computation speed f

• Arbitrary interconnection network, latency l,
bandwidth g
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The BSP Model

M M M M M

Network

P1 P2 Pp...

• Programs are SPMD
• Execution takes place in supersteps
• Cost Formula : T = f · W + g · H + l · S

• As a base unit for communications, 8-byte doubles will be
used
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BSP Programming

‘BSP-style’ programming using a conventional
communications library (MPI/Cray shmem/...)
• Barrier synchronizations for creating superstep structure

• Many libraries already provide functionality for one sided
communication/direct remote memory access (DRMA)

Using a specialized library (The Oxford BSP
Toolset/PUB/CGMlib/...)
• Specialized communication primitives (bulk synchronous

message passing/DRMA)

• Some libraries (Oxford Toolset, PUB) include optimized
barrier synchronization functions and routing

• Higher level of abstraction
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The BSPlib Standard

Communication primitives:

• DRMA: buffered and unbuffered put, get

• BSMP: send and move

• Synchronization

• Combining and Broadcasting

For the experiments, a BSPlib-style wrapper library
was created.
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BSPlib Implementations

The Oxford BSP Toolset
• Supports 3 kinds of base architecture: message passing,

shared memory, DRMA

• Experiments used message passing MPI interface

• Last release from ’98, compatibility issues on more modern
systems

PUB
• Support for message passing and shared memory

architectures

• Experiments used message passing MPI interface

• Additional support for oblivious synchronization, processor
groups

• Less trouble with setup on all systems

• Advanced functionality e.g. for process migration
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Other Libraries

CGMlib
• Runs on top of message passing MPI

• Includes set of algorithms for sorting, list ranking, etc.

• Abstract C++ interface

• Lists of abstract datatypes with constant size are used for
data exchange

SSCRAP
• Uses MPI (message passing) or Posix (SHMEM) for data

exchange

• Support for DRMA, BSMP, conventional message passing,
collective operations, etc.

• ’Soft’ synchronization (send or receive)

• C++ interface
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‘BSP-style’ Programming in MPI

Approach here: a BSPlib style MPI-1 library was
implemented naively (without message combining,
etc.)

• Isend/Recv for data exchange

• Barrier synchronization

• Emulated DRMA on top

Advantage: no overhead for send/put
Drawback: high latency, presumably overhead for
get operations
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Systems used

Measurements on parallel machines at

the Centre for Scientific Computing:

aracari: IBM cluster, 64 × 2-way SMP Pentium3
1.4 GHz/128 GB of memory
(Interconnection Network: Myrinet 2000,
MPI: mpich-gm)

argus: Linux cluster, 31 × 2-way SMP Pentium4
Xeon 2.6 GHz processors/62 GB of memory
(Interconnection Network: 100Mbit Ethernet,
MPI: mpich-p4)
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Measuring f

Measuring algorithm perfor-
mance on one node:
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BLAS
IJK loop

Measuring computation time
separately in one run:
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f = 400 Mflops

(Example for Matrix-Matrix multiplication)
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Measuring g and l

Problems encountered: realistic values of g and l depend on

• The number of processors that are used
• The communications pattern
• The communication volume

E.g. for all-to-all communication on aracari
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Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.

All-to-all communication on aracari:
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Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.
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Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.

Random permutation on aracari:
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Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.
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Bandwidth Surface (argus)

The picture looks different on the slower communications
network

All-to-all communication on argus:
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Bandwidth Surface (argus)

The picture looks different on the slower communications
network

All-to-all communication on argus:
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Bandwidth Surface (argus)

The picture looks different on the slower communications
network

Random permutation on argus:
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Bandwidth Surface (argus)

The picture looks different on the slower communications
network
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Latency

The latency can be measured for synchronizations preceded
by different types of communication:

MPI Oxtool PUB
aracari 4 processors

l (low) 210 µs 43 µs 39 µs
l (high) 230 µs 67 µs 55 µs
l (all-to-all) 252 µs 89 µs 72 µs

aracari 32 processors

l (low) 2203 µs 621 µs 142 µs
l (high) 2242 µs 638 µs 163 µs
l (all-to-all) 2881 µs 1250 µs 750 µs

argus 4 processors

l (low) 5642 µs 796 µs 975 µs
l (high) 5789 µs 1442 µs 1176 µs
l (all-to-all) 5086 µs 1613 µs 871 µs
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Benchmark Summary

Bandwidth depends on message count, message
size and the communications pattern

On aracari:
• Best all-to-all performance: Oxtool

• Best random permutation performance (few
messages): PUB, > 64 messages: Oxtool

• Best self communication performance (few
messages): PUB, > 32 messages: Oxtool

• MPI: good performance when message size is
large
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Benchmark Summary

Bandwidth depends on message count, message
size and the communications pattern

On argus:
• Best all-to-all performance: PUB

• Random permutation: little difference between
PUB and Oxtool

• Best self communication performance (few
messages): Oxtool

• MPI: good performance when message size and
count are larger than 16/32 doubles
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Benchmark Summary

Latency:

• PUB consistently has best latency (without using
the faster ‘oblivious’ synchronization)

• As expected, ‘naive’ MPI library has highest
latency
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BSP Matrix-Matrix Multiplication

We want to compute the product of two dense n × n matrices
A and B

Simple formula:

cik =
n

∑

j=1

aijbjk, having A = [aij ] , B = [bij ] , C = [cij]

V

C

A

B

aij

bjk

vijk

cik
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BSP Matrix-Matrix Multiplication (2)

Block decomposition into q blocks for memory efficient
parallel algorithm:

CIK =

q1/3

∑

J=1

VIJK with I, K = 1, 2, ..., q1/3

V

C

A

B
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Why this algorithm?

• Communication block size can be controlled by
parameter q

• Message combining has to be used when using
fixed initial data distribution (block-cyclic with
block width n/

√
p)

• Can be compared e.g. to PBLAS

• ‘Nice’ version can predistribute the blocks before
the computation to avoid spikes because of data
distribution
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Prediction model

BSP running time:

T = f ·

⌈

q

p

⌉

·
n3

q
+

g ·

⌈

q

p

⌉

·
n2

q2/3
·
(

2 + 1/q1/3

)

+

l · 2

⌈

q

p

⌉

Two matrices are transferred
row by row
→ value of g is taken from
the red line as value for max-
imum matrix size
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Prediction results on aracari

Oxtool, using 4 processors
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p = 4, 1/f = 4e+08 g = 3.5e-07, l = 8.9e-05 
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Prediction results on aracari

PUB, using 4 processors
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Prediction results on aracari

MPI, using 4 processors
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Prediction results, more processors

Oxtool, using 32 processors
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Speedup Results (1)

aracari, using 16 processors
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Speedup Results (2)

aracari, using 32 processors (spikes when matrix size mod
6 == 0)
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Performance Comparison with PBLAS
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Performance Comparison with PBLAS
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Summary

• Despite restrictions due to BSP model, all implementations
reach good speedup on aracari when number of blocks
is low

• Overall benchmark results look better for PUB
• Oxtool has best matrix multiplication performance on
aracari (Myrinet)

• PUB has best matrix multiplication performance on argus
(Ethernet)

• Predictably no real speedup on argus, due to slow
communications network and fast nodes

• Performance of simple BSP algorithm is comparable with
PBLAS
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Further Work

• Run experiments on shared memory machine

• Use more different communication patterns for
benchmarking

• Study other algorithms with different
communication patterns

• Keeping simplicity, extend prediction model for
more accuracy
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