
Experimental Evaluation of BSP Programming Libraries - p. 1/26

Experimental Evaluation of BSP Programming Libraries

Peter Krusche

Department of Computer Science
Centre for Scientific Computing

University of Warwick
peter@dcs.warwick.ac.uk

Introduction

•Outline

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 2/26

Outline

Motivation...
Study and compare the communication
characteristics and performance predictability of
‘BSP-style’ communication libraries.

Outline
1. The BSP Model

2. BSP Programming Libraries

3. Benchmarking

4. Performance and Predictability

Introduction

The BSP Model

•The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 3/26

The BSP Model

The BSP model for parallel algorithms was used
with some slight adaptations.

The model has been adapted here to use seconds
instead of flops as a base unit for the running time:

• p identical processor/memory pairs (computing
nodes), computation speed f

• Arbitrary interconnection network, latency l,
bandwidth g

Introduction

The BSP Model

•The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 3/26

The BSP Model

M M M M M

Network

P1 P2 Pp...

• Programs are SPMD
• Execution takes place in supersteps
• Cost Formula : T = f · W + g · H + l · S

• As a base unit for communications, 8-byte doubles will be
used

Introduction

The BSP Model

BSP Libraries

•BSP Programming

•The BSPlib Standard

•BSPlib Implementations

•Other Libraries

• ‘BSP-style’ Programming

in MPI

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 4/26

BSP Programming

‘BSP-style’ programming using a conventional
communications library (MPI/Cray shmem/...)
• Barrier synchronizations for creating superstep structure

• Many libraries already provide functionality for one sided
communication/direct remote memory access (DRMA)

Using a specialized library (The Oxford BSP
Toolset/PUB/CGMlib/...)
• Specialized communication primitives (bulk synchronous

message passing/DRMA)

• Some libraries (Oxford Toolset, PUB) include optimized
barrier synchronization functions and routing

• Higher level of abstraction

Introduction

The BSP Model

BSP Libraries

•BSP Programming

•The BSPlib Standard

•BSPlib Implementations

•Other Libraries

• ‘BSP-style’ Programming

in MPI

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 5/26

The BSPlib Standard

Communication primitives:

• DRMA: buffered and unbuffered put, get

• BSMP: send and move

• Synchronization

• Combining and Broadcasting

For the experiments, a BSPlib-style wrapper library
was created.

Introduction

The BSP Model

BSP Libraries

•BSP Programming

•The BSPlib Standard

•BSPlib Implementations

•Other Libraries

• ‘BSP-style’ Programming

in MPI

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 6/26

BSPlib Implementations

The Oxford BSP Toolset
• Supports 3 kinds of base architecture: message passing,

shared memory, DRMA

• Experiments used message passing MPI interface

• Last release from ’98, compatibility issues on more modern
systems

PUB
• Support for message passing and shared memory

architectures

• Experiments used message passing MPI interface

• Additional support for oblivious synchronization, processor
groups

• Less trouble with setup on all systems

• Advanced functionality e.g. for process migration

Introduction

The BSP Model

BSP Libraries

•BSP Programming

•The BSPlib Standard

•BSPlib Implementations

•Other Libraries

• ‘BSP-style’ Programming

in MPI

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 7/26

Other Libraries

CGMlib
• Runs on top of message passing MPI

• Includes set of algorithms for sorting, list ranking, etc.

• Abstract C++ interface

• Lists of abstract datatypes with constant size are used for
data exchange

SSCRAP
• Uses MPI (message passing) or Posix (SHMEM) for data

exchange

• Support for DRMA, BSMP, conventional message passing,
collective operations, etc.

• ’Soft’ synchronization (send or receive)

• C++ interface

Introduction

The BSP Model

BSP Libraries

•BSP Programming

•The BSPlib Standard

•BSPlib Implementations

•Other Libraries

• ‘BSP-style’ Programming

in MPI

Benchmarking

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 8/26

‘BSP-style’ Programming in MPI

Approach here: a BSPlib style MPI-1 library was
implemented naively (without message combining,
etc.)

• Isend/Recv for data exchange

• Barrier synchronization

• Emulated DRMA on top

Advantage: no overhead for send/put
Drawback: high latency, presumably overhead for
get operations

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 9/26

Systems used

Measurements on parallel machines at

the Centre for Scientific Computing:

aracari: IBM cluster, 64 × 2-way SMP Pentium3
1.4 GHz/128 GB of memory
(Interconnection Network: Myrinet 2000,
MPI: mpich-gm)

argus: Linux cluster, 31 × 2-way SMP Pentium4
Xeon 2.6 GHz processors/62 GB of memory
(Interconnection Network: 100Mbit Ethernet,
MPI: mpich-p4)

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 10/26

Measuring f

Measuring algorithm perfor-
mance on one node:

500 1000
Matrix Size

0

100 M

200 M

300 M

400 M

500 M

F
lo

p/
s

BLAS
IJK loop

Measuring computation time
separately in one run:

0 500 1000 1500 2000
Matrix Size

300 M

350 M

400 M

450 M

500 M

550 M

600 M

F
lo

p/
s

Actual floprate
f = 400 Mflops

(Example for Matrix-Matrix multiplication)

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 11/26

Measuring g and l

Problems encountered: realistic values of g and l depend on

• The number of processors that are used
• The communications pattern
• The communication volume

E.g. for all-to-all communication on aracari

50 100 150 200 250
Number of messages

0

2000

4000

6000

C
om

m
un

ic
at

io
n

tim
e

[u
s]

MPI, 4 nodes
MPI, 16 nodes
Oxtool, 4 nodes
Oxtool, 16 nodes

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 12/26

Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.

All-to-all communication on aracari:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 16 nodes
OXTOOL 16 nodes

MPI 16 nodes

 2

 8

 32

 128

2
8

32
128

512

 0.1

 1

 10

 100

1000

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 12/26

Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.

All-to-all communication on aracari:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 16 nodes
OXTOOL 16 nodes

 2

 8

 32

 128

2
8

32
128

512

 0.1

 1

 10

 100

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 12/26

Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.

Random permutation on aracari:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 16 nodes
OXTOOL 16 nodes

MPI 16 nodes

 2
 8

 32
 128

 512

2
8

32
128

512

 0.1
 1

 10
 100

1000
1e+04

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 12/26

Bandwidth Surface (aracari)

For a better picture, the effective bandwidth can be sampled
depending on message size and count.

Random permutation on aracari:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 16 nodes
OXTOOL 16 nodes

 2
 8

 32
 128

 512

2
8

32
128

512

 0.1

 1

 10

 100

1000

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 13/26

Bandwidth Surface (argus)

The picture looks different on the slower communications
network

All-to-all communication on argus:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 4 nodes
OXTOOL 4 nodes

MPI 4 nodes

 2

 8

 32

 128

2
8

32
128

512

 1

 10

 100

1000

1e+04

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 13/26

Bandwidth Surface (argus)

The picture looks different on the slower communications
network

All-to-all communication on argus:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 4 nodes
OXTOOL 4 nodes

 2

 8

 32

 128

2
8

32
128

512

 1

 10

 100

1000

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 13/26

Bandwidth Surface (argus)

The picture looks different on the slower communications
network

Random permutation on argus:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 4 nodes
OXTOOL 4 nodes

MPI 4 nodes

 2
 8

 32
 128

 512

2
8

32
128

512

0.01
 0.1
 1

 10
 100

1000
1e+04

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 13/26

Bandwidth Surface (argus)

The picture looks different on the slower communications
network

Random permutation on argus:

ti
m

e
p

er
 e

le
m

en
t

[u
s]

m
 (n

um
ber

 of m
es

sa
ges

)

message size

PUB 4 nodes
OXTOOL 4 nodes

 2
 8

 32
 128

 512

2
8

32
128

512

0.01
 0.1
 1

 10
 100

1000
1e+04

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 14/26

Latency

The latency can be measured for synchronizations preceded
by different types of communication:

MPI Oxtool PUB
aracari 4 processors

l (low) 210 µs 43 µs 39 µs
l (high) 230 µs 67 µs 55 µs
l (all-to-all) 252 µs 89 µs 72 µs

aracari 32 processors

l (low) 2203 µs 621 µs 142 µs
l (high) 2242 µs 638 µs 163 µs
l (all-to-all) 2881 µs 1250 µs 750 µs

argus 4 processors

l (low) 5642 µs 796 µs 975 µs
l (high) 5789 µs 1442 µs 1176 µs
l (all-to-all) 5086 µs 1613 µs 871 µs

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 15/26

Benchmark Summary

Bandwidth depends on message count, message
size and the communications pattern

On aracari:
• Best all-to-all performance: Oxtool

• Best random permutation performance (few
messages): PUB, > 64 messages: Oxtool

• Best self communication performance (few
messages): PUB, > 32 messages: Oxtool

• MPI: good performance when message size is
large

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 15/26

Benchmark Summary

Bandwidth depends on message count, message
size and the communications pattern

On argus:
• Best all-to-all performance: PUB

• Random permutation: little difference between
PUB and Oxtool

• Best self communication performance (few
messages): Oxtool

• MPI: good performance when message size and
count are larger than 16/32 doubles

Introduction

The BSP Model

BSP Libraries

Benchmarking

•Systems used

•Measuring f

•Measuring g and l

•Bandwidth Surface

(aracari)
•Bandwidth Surface

(argus)
•Latency

•Benchmark Summary

Performance/Predictions

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 15/26

Benchmark Summary

Latency:

• PUB consistently has best latency (without using
the faster ‘oblivious’ synchronization)

• As expected, ‘naive’ MPI library has highest
latency

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 16/26

BSP Matrix-Matrix Multiplication

We want to compute the product of two dense n × n matrices
A and B

Simple formula:

cik =
n

∑

j=1

aijbjk, having A = [aij] , B = [bij] , C = [cij]

V

C

A

B

aij

bjk

vijk

cik

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 17/26

BSP Matrix-Matrix Multiplication (2)

Block decomposition into q blocks for memory efficient
parallel algorithm:

CIK =

q1/3

∑

J=1

VIJK with I, K = 1, 2, ..., q1/3

V

C

A

B

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 18/26

Why this algorithm?

• Communication block size can be controlled by
parameter q

• Message combining has to be used when using
fixed initial data distribution (block-cyclic with
block width n/

√
p)

• Can be compared e.g. to PBLAS

• ‘Nice’ version can predistribute the blocks before
the computation to avoid spikes because of data
distribution

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 19/26

Prediction model

BSP running time:

T = f ·

⌈

q

p

⌉

·
n3

q
+

g ·

⌈

q

p

⌉

·
n2

q2/3
·
(

2 + 1/q1/3

)

+

l · 2

⌈

q

p

⌉

Two matrices are transferred
row by row
→ value of g is taken from
the red line as value for max-
imum matrix size

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 20/26

Prediction results on aracari

Oxtool, using 4 processors

0 500 1000 1500 2000
Matrix Size

0

5

10

15

20

R
un

ni
ng

 ti
m

e
[s

]
 q=27 mean error 9.89%
 q=125 mean error 10.60%
 q=343 mean error 13.06%
 q=729 mean error 13.56%
prediction q=27
prediction q=125
prediction q=343
prediction q=729

p = 4, 1/f = 4e+08 g = 3.5e-07, l = 8.9e-05

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 20/26

Prediction results on aracari

PUB, using 4 processors

0 500 1000 1500 2000
Matrix Size

0

10

20

30

40

50

60

R
un

ni
ng

 ti
m

e
[s

]
 q=27 mean error 52.68%
 q=125 mean error 91.92%
 q=343 mean error 110.39%
 q=729 mean error 120.03%
prediction q=27
prediction q=125
prediction q=343
prediction q=729

p = 4, 1/f = 4e+08 g = 2.5e-06, l = 7.2e-05

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 20/26

Prediction results on aracari

MPI, using 4 processors

0 500 1000 1500 2000
Matrix Size

0

5

10

15

20

R
un

ni
ng

 ti
m

e
[s

]
 q=27 mean error 4.04%
 q=125 mean error 4.92%
 q=343 mean error 7.44%
 q=729 mean error 8.20%
prediction q=27
prediction q=125
prediction q=343
prediction q=729

p = 4, 1/f = 4e+08 g = 3.4e-07, l = 0.00025

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 21/26

Prediction results, more processors

Oxtool, using 32 processors

0 500 1000 1500 2000
Matrix Size

0

0.5

1

1.5

2

2.5

3

R
un

ni
ng

 ti
m

e
[s

]
 q=343 mean error 20.36%
 q=512 mean error 31.71%
 q=729 mean error 34.20%
prediction q=343
prediction q=512
prediction q=729

p = 32, 1/f = 4e+08 g = 5.3e-07, l = 0.0013

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 22/26

Speedup Results (1)

aracari, using 16 processors

0 500 1000 1500 2000
Matrix Size

0

5

10

15

20

25

30
S

pe
ed

up
sequential
Oxtool: q=64
Oxtool: q=729
PUB: q=64
PUB: q=729
MPI: q=64
MPI: q=729

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 23/26

Speedup Results (2)

aracari, using 32 processors (spikes when matrix size mod
6 == 0)

0 500 1000 1500 2000
Matrix Size

0

10

20

30

40

50
S

pe
ed

up
sequential
Oxtool: q=216
Oxtool: q=729
PUB: q=216
PUB: q=729
MPI: q=216
MPI: q=729

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 24/26

Performance Comparison with PBLAS

4000 6000 8000 10000
Matrix size

0

5 G

10 G

15 G

20 G

flo
p/

s
PBLAS, 36 nodes
PBLAS, 16 nodes
MPI, 36 nodes
MPI, 16 nodes
Oxtool, 36 nodes
Oxtool, 16 nodes
PUB, 36 nodes
PUB, 16 nodes

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

•BSP Matrix-Matrix

Multiplication
•BSP Matrix-Matrix

Multiplication (2)
•Why this algorithm?

•Prediction model

•Prediction results on

aracari
•Prediction results, more

processors
•Speedup Results (1)

•Speedup Results (2)

•Performance Comparison

with PBLAS

Conclusion

Experimental Evaluation of BSP Programming Libraries - p. 24/26

Performance Comparison with PBLAS

2000 4000 6000 8000 10000
Matrix size

2 G

4 G

6 G

8 G

10 G

12 G

flo
p/

s
PBLAS, 36 nodes
PUB, 32 nodes
MPI, 32 nodes
Oxtool, 32 nodes

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

Conclusion

•Summary

•Further Work

Experimental Evaluation of BSP Programming Libraries - p. 25/26

Summary

• Despite restrictions due to BSP model, all implementations
reach good speedup on aracari when number of blocks
is low

• Overall benchmark results look better for PUB
• Oxtool has best matrix multiplication performance on
aracari (Myrinet)

• PUB has best matrix multiplication performance on argus
(Ethernet)

• Predictably no real speedup on argus, due to slow
communications network and fast nodes

• Performance of simple BSP algorithm is comparable with
PBLAS

Introduction

The BSP Model

BSP Libraries

Benchmarking

Performance/Predictions

Conclusion

•Summary

•Further Work

Experimental Evaluation of BSP Programming Libraries - p. 26/26

Further Work

• Run experiments on shared memory machine

• Use more different communication patterns for
benchmarking

• Study other algorithms with different
communication patterns

• Keeping simplicity, extend prediction model for
more accuracy

	Introduction
	Outline

	The BSP Model
	The BSP Model
	The BSP Model

	BSP Libraries
	BSP Programming
	The BSPlib Standard
	BSPlib Implementations
	Other Libraries
	`BSP-style' Programming in MPI

	Benchmarking
	Systems used
	Measuring f
	Measuring g and l
	Bandwidth Surface (aracari)
	Bandwidth Surface (aracari)
	Bandwidth Surface (aracari)
	Bandwidth Surface (aracari)

	Bandwidth Surface (argus)
	Bandwidth Surface (argus)
	Bandwidth Surface (argus)
	Bandwidth Surface (argus)

	Latency
	Benchmark Summary
	Benchmark Summary
	Benchmark Summary

	Performance/Predictions
	BSP Matrix-Matrix Multiplication
	BSP Matrix-Matrix Multiplication (2)
	Why this algorithm?
	Prediction model
	Prediction results on aracari
	Prediction results on aracari
	Prediction results on aracari

	Prediction results, more processors
	Speedup Results (1)
	Speedup Results (2)
	Performance Comparison with PBLAS
	Performance Comparison with PBLAS

	Conclusion
	Summary
	Further Work

