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BSP Algorithms

Bulk-Synchronous Parallelism

Model for parallel computation:

L. G. Valiant.
A bridging model for parallel computation.
Communications of the ACM, 33:103–111, 1990.

Main ideas:
p processors working asynchronously
Can communicate using g operations to transmit
one element of data
Can synchronise using l sequential operations.



BSP Algorithms

Bulk-Synchronous Parallelism

Computation proceeds in supersteps
Communication takes place at the end of each
superstep
Between supersteps, barrier-style synchronisation
takes place
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BSP Algorithms

Bulk-Synchronous Parallelism

Superstep s has computation cost ws and communica-
tion hs = max(hin

s , hout
s ).

When there are S supersteps:
⇒ Computation work

W =
∑

16s6S

ws

⇒ Communication
H =

∑

16s6S

hs

Formula for running time: T = W + g ·H + l · S.



Parallel Prefix in BSP

Definition (Parallel Prefix)
Given n values x1, x2, . . . , xn and an associative
operator ⊕, compute the values x1, x1 ⊕ x2, x1 ⊕ x2 ⊕ x3,
. . . ,

⊕
i=1,2,...,n xi.

Fact. . .
Under some natural assumptions, we can carry out a
parallel prefix operation over n elements on a BSP
computer with p processors using W = O(n

p ), H = O(p)

and S = O(1).
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The LCS Problem

Definition (Input data)
Let x = x1x2 . . . xm and y = y1y2 . . .yn be two strings on
an alphabet Σ.

Definition (Subsequences)
A subsequence u of x: u can be obtained by deleting
zero or more elements from x.

Definition (Longest Common Subsequences)
An LCS (x, y) is any string which is subsequence of both
x and y and has maximum possible length. Length of
these sequences: LLCS (x, y).



The Semi-local LCS Problem

Definition (Substrings)
A substring of any string x can be obtained by removing
zero or more characters from the beginning and/or the
end of x.

Definition (Highest-score matrix)
The element A(i, j) of the LCS highest-score matrix of
two strings x and y gives the LLCS of yi . . .yj and x.

Definition (Semi-local LCS)
Solutions to the semi-local LCS problem are represented
by a (possibly implicit) highest-score matrix A(i, j).
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LCS grid dags and highest-score matrices

LCS Problem can be
represented as longest
path problem in a Grid
DAG
String-Substring LCS
Problem⇒⇒⇒
A(i, j) = length of
longest path from (0, i)
to (n, j) (top to bottom).

Example
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Extended grid dag

Infinite extension of the LCS grid dag, outside the core
area, everything matches:

The extended highest-score matrix is now defined on
indices [−∞, +∞]× [−∞, +∞].



Additional definitions

Definition (Integer ranges)
We denote the set of integers {i, i+ 1, . . . , j} as [i : j].

Definition (Odd half-integers)
We denote half-integer variables using a ,̂ and denote
the set of half-integers {i+ 1

2 , i+ 3
2 , . . . , j− 1

2 } as 〈i : j〉.



Critical point theorem

Definition (Critical Point)
Odd half-integer point (i− 1

2 , j+ 1
2) is critical iff.

A(i, j) + 1 = A(i− 1, j) = A(i, j+ 1) = A(i− 1, j+ 1).

Theorem (Schmidt’95, Alves+’06, Tiskin’05)
1 We can represent a the whole extended

highest-score matrix by a finite set of such critical
points.

2 Assuming w.l.o.g. input strings of equal length n,
there are N = 2n such critical points that implicitly
represent the whole score matrix.

3 There is an algorithm to obtain these points in time
O(n2).



Highest-score matrices

Example (Explicit highest-score matrix)

0 1 2 3 4 5 6 7
-4 4 4 4 4 4 4 4 4
-3 3 3 3 4 4 4 4 4
-2 2 2 3 4 4 4 4 4
-1 1 1 2 3 3 3 4 4
0 0 1 2 3 3 3 4 4
1 -1 0 1 2 2 2 3 4
2 -2 -1 0 1 1 2 3 4
3 -3 -2 -1 0 1 2 3 4



Querying highest-score matrix entries

Theorem (Tiskin’05)
If d(i, j) is the number of critical points (̂ı, ̂) in the
extended score matrix with i < ı̂ and ̂ < j, then
A(i, j) = j− i− d(i, j).

Definition (Density and distribution matrices)
The elements d(i, j) form a distribution matrix over the
entries of density (permutation) matrix D with nonzeros
at all critical points (̂ı, ̂) in the extended highest-score
matrix:

d(i, j) =
∑

(ı̂,̂)∈〈i:N〉×〈0:j〉
D(̂ı, ̂)

Can compute this efficiently using range querying data
structures.
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Sequential highest-score matrix multiplication

Algorithm, Tiskin’05
Given the distribution matrices dA and dB for two
adjacent blocks of equal height M and width N in the
grid dag, we can compute the distribution matrix dC for
the union of these blocks in O(N1.5 +M).



Sequential highest-score matrix multiplication

Combine critical points by removing double
crossings

“Trivial part” (O(M)):

0 1 2 3 4-1-2-3-4 5 6 7 8



Sequential highest-score matrix multiplication

Combine critical points by removing double
crossings

“Nontrivial part” (O(N1.5)):

0 1 2 3 4-1-2-3-4 5 6 7 8



Nontrivial part

The non-trivial part can be seen as (min, +) matrix
product (dA|B|C are now the nontrivial parts of the
corresponding distribution matrices):

dC(i,k) = min
j

(dA(i, j) + dB(j,k))

Explicit form, naive algorithm: O(n3)

Explicit form, algorithm that uses highest-score
matrix properties: O(n2)

Implicit form, divide-and-conquer: O(n1.5)



Nontrivial part

The non-trivial part can be seen as (min, +) matrix
product (dA|B|C are now the nontrivial parts of the
corresponding distribution matrices):

dC(i,k) = min
j

(dA(i, j) + dB(j,k))

Explicit form, naive algorithm: O(n3)

Explicit form, algorithm that uses highest-score
matrix properties: O(n2)

Implicit form, divide-and-conquer: O(n1.5)



Nontrivial part

The non-trivial part can be seen as (min, +) matrix
product (dA|B|C are now the nontrivial parts of the
corresponding distribution matrices):

dC(i,k) = min
j

(dA(i, j) + dB(j,k))

Explicit form, naive algorithm: O(n3)

Explicit form, algorithm that uses highest-score
matrix properties: O(n2)

Implicit form, divide-and-conquer: O(n1.5)



Nontrivial part

The non-trivial part can be seen as (min, +) matrix
product (dA|B|C are now the nontrivial parts of the
corresponding distribution matrices):

dC(i,k) = min
j

(dA(i, j) + dB(j,k))

Explicit form, naive algorithm: O(n3)

Explicit form, algorithm that uses highest-score
matrix properties: O(n2)

Implicit form, divide-and-conquer: O(n1.5)



Divide-and-conquer multiplication
C-blocks and relevant nonzeros
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Divide-and-conquer multiplication
C-blocks and relevant nonzeros

DA

DB

DC

C-block sized h× h

relevant nonzeros

local minimum



Divide-and-conquer multiplication
δ-sequences and relevant nonzeros

DA

DB

DC

← j

Splitting relevant nonzeros in DA

and DB into two sets at a position
j ∈ [0 : N], we get numbers

δ�A(j) of relevant nonzeros in
DA up to column j− 1

2

δ�B(j) of relevant nonzeros in
DB starting at row j+ 1

2



Divide-and-conquer multiplication
j-blocks

Example (j-blocks)

d = h

δA

j

h

d = 0d = −h

δB

Definition (∆-sequences)
δ’s don’t change inside a j-block ⇒

∆�A(d) = any
j∈J �(d)

δ�B(j)

∆�B(d) = any
j∈J �(d)

δ�B(j)



Divide-and-conquer multiplication
j-blocks
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Divide-and-conquer multiplication
Local minima

Definition (local minima)
The sequence

M�(d) = min
j∈J �(d)

(dA(i0, j) + dB(j,k0))

contains the minimum of dA(i0, j) + dB(j,k0) in every
j-block.

We can use M’s and ∆’s to compute the number of
nonzeros in a C-block.
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Divide-and-conquer multiplication
Recursive step

Sequences M for every C-subblock can be computed in
O(h):

M (d ′) = min
d

M�(d),

M (d ′) = min
d

M�(d) + ∆̄B (d),

M (d ′) = min
d

M�(d) + ∆̄A (d),

M (d ′) = min
d

M�(d) + ∆̄A (d) + ∆̄B (d)

having ∆̄(i ′,k ′, h
2 )

A (d) − ∆̄
(i ′,k ′, h

2 )

B (d) = d ′ with d ′ ∈ [−h
2 : h

2 ].



Divide-and-conquer multiplication
Recursive step

Sequences ∆A(d ′) and ∆B(d ′) can also be
determined in O(h) by a scan of the relevant
nonzeros for each subblock.
Knowing ∆A(d ′), ∆B(d ′) and M(d ′) for each
subblock, we can continue the recursion in every
subblock.
The recursion terminates when N C-blocks of size 1
are left.
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Basic algorithm idea

Start the recursion at a point where there are p
C-blocks.
This is at level 1

2 log p.
Precompute and distribute the required sequences
∆ and M for each C-block in parallel.
Every C-block has size h = N√

p , and hence requires

sequences with O( N√
p) values.

After these sequences have been precomputed and
redistributed, we can use the sequential algorithm
to finish the computation.



Assumptions

Assume that:
√

p is an integer.
Every processor has unique identifier q with
0 6 q < p.
Every processor q corresponds to exactly one
location (qx,qy) ∈ [0 :

√
p− 1]× [0 :

√
p− 1].

Initial distribution of nonzeros in DA and DB is
assumed to be even among all processors.



First Step

Redistribute the
nonzeros to strips
of width N

p

Send all nonzeros
(̂ı, ̂) in DA and
(̂, k̂) in DB to
processor
b(̂− 1

2) · p/Nc.
Possible in one
superstep using
communication
O(N

p ).

DA

DB

DC

} Np
p

Np
p

︸︷︷︸

i

k

j

p vertical strips
N
p
nonzeros each



Precomputing M

DA

DB

DC

i

k

j

1 Compute the elementary
(min, +) products
dA(◦◦◦x, j) + dB(j,◦◦◦y) along
j ∈ [0 : N].

2 Processor q holds all DA(̂ı, ̂)
and all DB(̂, k̂)
for ̂ ∈ 〈q · N

p : (q+ 1) · N
p 〉.

3 Can compute the values
dA(◦◦◦x, j) and dB(j,◦◦◦y) by using
parallel prefix/suffix.

4 After prefix and suffix
computations, every processor
holds N/p values
dA(◦◦◦x, j) + dB(j,◦◦◦y)

for j ∈ [q · N√
p : (q+ 1) · N√

p ].
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Redistribution Step

DA

DB

DC

i

k

j

p vertical strips N
p
nonzeros each

DA

DB

DCp
p horizontal strips with Np

p

nonzeros each

⇒



Analysis

Computational work bounded by the sequential
recursion:
W = O((N/

√
p)1.5) = O(N1.5/p0.75)

Every processor holds O(N/p) nonzeros before
redistribution.
Every nonzero is relevant for

√
p C-blocks.

⇒ O(N/
√
p) communication for redistributing the

nonzeros.
⇒ H = O(N/

√
p+ p+N/

√
p) = O(N/

√
p)

(if N/
√
p > p → N > p1.5)

S = O(1) (parallel prefix)
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Quadtree Merging

First, compute scores for a regular grid of p
sub-dags of size n/

√
p× n/√p

Then merge these in a quadtree-like scheme using
parallel score-matrix multiplication:



Analysis

Quadtree has 1
2 log2 p levels

On level l, 0 6 l 6 1
2 log2 p, we have

pl = p
4l (number of processors that work together on one

merge)

Nl = N
2l (block size of merge)

⇒ wl = O

( (
N
2l

)1.5

(
p

4l

)0.75

)
= O

(
N1.5

p0.75

)

⇒ hl = O

(
N
2l(

p

4l

)0.5

)
= O

(
N

p0.5

)



Analysis

Quadtree has 1
2 log2 p levels

Hence, we get

work W = O(n2

p + N1.5 log p
p0.75 ) = O(n2/p)

(assuming that n > p2),
communication H = O(n log p√

p ), and

S = O(logp) supersteps.



Comparison to other parallel algorithms

W H S References
Global LCS

O(n2

p ) O(n) O(p) [McColl’95]+
[Wagner & Fischer’74]

String-Substring LCS
O(n2

p ) O(Cp1/Cn logp) O(logp) [Alves+’03]

O(n2

p ) O(n logp) O(logp) [Tiskin’05],
[Alves+:06]

String-Substring, Prefix-Suffix LCS

O(n2 log n
p ) O(n2 log p

p ) O(logp) [Alves+’02]

O(n2

p ) O(n) O(p) [McColl’95]+
[Alves+’06], [Tiskin’05]

O(n2

p ) O(n log p√
p ) O(logp) NEW



Summary and Outlook

Summary
We have looked at a parallel algorithm for semilocal
string comparison that is

communication efficient
(in fact, achieving scalable communication),
work-optimal,

! and asymptotically better than even global LCS
computation.

Outlook
Score matrix multiplication can also be applied to
create a scalable algorithm for the longest
increasing subsequence problem.
Algorithm can be adapted to compute
edit-distances.
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Thank you!

Any questions?
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