Efficient parallel string comparison

Peter Krusche and Alexander Tiskin

Department of Computer Science

THE UNIVERSITY OF
WARWICK

ParCo 2007

Outline

(1) Introduction

- Bulk-Synchronous Parallelism
- String comparison
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Outline

(1) Introduction

- Bulk-Synchronous Parallelism
- String comparison
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

BSP Algorithms

Bulk-Synchronous Parallelism

Model for parallel computation:
E L. G. Valiant.
A bridging model for parallel computation. Communications of the ACM, 33:103-111, 1990.

Main ideas:

- p processors working asynchronously
- Can communicate using g operations to transmit one element of data
- Can synchronise using I sequential operations.

BSP Algorithms

Bulk-Synchronous Parallelism

- Computation proceeds in supersteps
- Communication takes place at the end of each superstep
- Between supersteps, barrier-style synchronisation takes place

BSP Algorithms

Bulk-Synchronous Parallelism

Superstep s has computation cost w_{s} and communication $h_{s}=\max \left(\mathrm{h}_{\mathrm{s}}^{\text {in }}, \mathrm{h}_{\mathrm{s}}^{\text {out }}\right)$.

When there are S supersteps:
\Rightarrow Computation work

$$
\mathrm{W}=\sum_{1 \leqslant \mathrm{~s} \leqslant \mathrm{~S}} \mathrm{~W}_{\mathrm{s}}
$$

\Rightarrow Communication

$$
H=\sum_{1 \leqslant s \leqslant s} h_{s}
$$

Formula for running time: $\mathrm{T}=\mathrm{W}+\mathrm{g} \cdot \mathrm{H}+\mathrm{I} \cdot \mathrm{S}$.

Parallel Prefix in BSP

Definition (Parallel Prefix)

Given n values $x_{1}, x_{2}, \ldots, x_{n}$ and an associative operator \oplus, compute the values $x_{1}, x_{1} \oplus x_{2}, x_{1} \oplus x_{2} \oplus x_{3}$, $\ldots, \oplus_{i=1,2, \ldots, n} x_{i}$.

Fact. . .

Under some natural assumptions, we can carry out a parallel prefix operation over n elements on a BSP computer with p processors using $W=O\left(\frac{n}{p}\right), H=O(p)$ and $\mathrm{S}=\mathrm{O}(1)$.

Outline

(1) Introduction

- Bulk-Synchronous Parallelism
- String comparison
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

The LCS Problem

Definition (Input data)

Let $x=x_{1} x_{2} \ldots x_{m}$ and $y=y_{1} y_{2} \ldots y_{n}$ be two strings on an alphabet Σ.

Definition (Subsequences)

A subsequence u of x : u can be obtained by deleting zero or more elements from x.

Definition (Longest Common Subsequences)

An $\operatorname{LCS}(x, y)$ is any string which is subsequence of both x and y and has maximum possible length. Length of these sequences: $\operatorname{LLCS}(x, y)$.

The Semi-local LCS Problem

Definition (Substrings)

A substring of any string x can be obtained by removing zero or more characters from the beginning and/or the end of x.

Definition (Highest-score matrix)

The element $A(i, j)$ of the LCS highest-score matrix of two strings x and y gives the LLCS of $y_{i} \ldots y_{j}$ and x.

Definition (Semi-local LCS)

Solutions to the semi-local LCS problem are represented by a (possibly implicit) highest-score matrix $A(i, j)$.

Outline

(1) Introduction
 - Bulk-Synchronous Parallelism
 - String comparison

(2) Sequential LCS algorithms

- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

LCS grid dags and highest-score matrices

- LCS Problem can be represented as longest path problem in a Grid DAG
- String-Substring LCS Problem \Rightarrow
$A(i, j)=$ length of longest path from $(0, i)$ to (n, j) (top to bottom).

Example

Extended grid dag

Infinite extension of the LCS grid dag, outside the core area, everything matches:

The extended highest-score matrix is now defined on indices $[-\infty,+\infty] \times[-\infty,+\infty]$.

Additional definitions

Definition (Integer ranges)

We denote the set of integers $\{i, i+1, \ldots, j\}$ as $[i: j]$.

Definition (Odd half-integers)

We denote half-integer variables using a ${ }^{\wedge}$, and denote the set of half-integers $\left\{i+\frac{1}{2}, i+\frac{3}{2}, \ldots, j-\frac{1}{2}\right\}$ as $\langle i: j\rangle$.

Critical point theorem

Definition (Critical Point)

Odd half-integer point ($i-\frac{1}{2}, j+\frac{1}{2}$) is critical iff. $A(i, j)+1=A(i-1, j)=A(i, j+1)=A(i-1, j+1)$.

Theorem (Schmidt'95, Alves+'06, Tiskin'05)

(1) We can represent a the whole extended highest-score matrix by a finite set of such critical points.
(2) Assuming w.l.o.g. input strings of equal length n, there are $\mathrm{N}=2 \mathrm{n}$ such critical points that implicitly represent the whole score matrix.
(3) There is an algorithm to obtain these points in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Highest-score matrices

Example (Explicit highest-score matrix)

$$
\begin{array}{ccccccccc}
& \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
\mathbf{- 4} & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\mathbf{- 3} & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 4 \\
\mathbf{- 2} & \mathbf{2} & \mathbf{2} & \bullet & 4 & 4 & 4 & 4 & 4 \\
\mathbf{- 1} & 1 & 1 & 2 & 3 & 3 & 3 & 4 & 4 \\
\mathbf{0} & 0 & 1 & 2 & 3 & 3 & 3 & 4 & 4 \\
\mathbf{1} & \mathbf{- 1} & 0 & 1 & 2 & 2 & 2 & 3 & 4 \\
\mathbf{2} & -2 & -1 & 0 & 1 & 1 & 2 & 3 & 4 \\
\mathbf{3} & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Querying highest-score matrix entries

Theorem (Tiskin'05)
If $\mathrm{d}(\mathrm{i}, \mathrm{j})$ is the number of critical points $(\hat{\imath}, \hat{\jmath})$ in the extended score matrix with $\mathfrak{i}<\hat{\imath}$ and $\hat{\jmath}<\mathfrak{j}$, then $A(i, j)=\mathfrak{j}-\mathrm{i}-\mathrm{d}(\mathrm{i}, \mathfrak{j})$.

Definition (Density and distribution matrices)
The elements $d(i, j)$ form a distribution matrix over the entries of density (permutation) matrix D with nonzeros at all critical points $(\hat{\imath}, \hat{\jmath})$ in the extended highest-score matrix:

Can compute this efficiently using range querying data structures.

Querying highest-score matrix entries

Theorem (Tiskin'05)

If $\mathrm{d}(\mathrm{i}, \mathfrak{j})$ is the number of critical points $(\hat{\imath}, \hat{\jmath})$ in the extended score matrix with $\mathfrak{i}<\hat{\imath}$ and $\hat{\jmath}<\mathfrak{j}$, then $A(\mathfrak{i}, \mathfrak{j})=\mathfrak{j}-\mathfrak{i}-\mathrm{d}(\mathrm{i}, \mathfrak{j})$.

Definition (Density and distribution matrices)

The elements $\mathrm{d}(\mathrm{i}, \mathrm{j})$ form a distribution matrix over the entries of density (permutation) matrix D with nonzeros at all critical points ($\hat{\imath}, \hat{\jmath}$) in the extended highest-score matrix:

$$
d(i, j)=\sum_{(\hat{\imath}, \hat{\jmath}) \in\langle i: N\rangle \times\langle 0: j\rangle} D(\hat{\imath}, \hat{\jmath})
$$

Can compute this efficiently using range querying data structures.

Outline

(1) Introduction
 - Bulk-Synchronous Parallelism
 - String comparison

(2) Sequential LCS algorithms

- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Sequential highest-score matrix multiplication

Algorithm, Tiskin'05

Given the distribution matrices d_{A} and d_{B} for two adjacent blocks of equal height M and width N in the grid dag, we can compute the distribution matrix d_{C} for the union of these blocks in $\mathrm{O}\left(\mathrm{N}^{1.5}+\mathrm{M}\right)$.

Sequential highest-score matrix multiplication

Combine critical points by removing double crossings
"Trivial part" $(O(M))$:

Sequential highest-score matrix multiplication

Combine critical points by removing double crossings
"Nontrivial part" ($\mathrm{O}\left(\mathrm{N}^{1.5}\right)$):

Nontrivial part

- The non-trivial part can be seen as (min, +) matrix product ($\mathrm{d}_{\mathrm{A}|\mathrm{B}| \mathrm{C}}$ are now the nontrivial parts of the corresponding distribution matrices):

$$
d_{C}(i, k)=\min _{j}\left(d_{A}(i, j)+d_{B}(j, k)\right)
$$

- Explicit form, naive algorithm: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Explicit form, algorithm that uses highest-score matrix properties: $O\left(n^{2}\right)$
- Implicit form, divide-and-conquer: $\mathrm{O}\left(\mathrm{n}^{1.5}\right)$

Nontrivial part

- The non-trivial part can be seen as (min,+) matrix product ($\mathrm{d}_{\mathcal{A}|\mathrm{B}| \mathrm{C}}$ are now the nontrivial parts of the corresponding distribution matrices):

$$
d_{C}(i, k)=\min _{j}\left(d_{A}(i, j)+d_{B}(j, k)\right)
$$

- Explicit form, naive algorithm: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Explicit form, algorithm that uses highest-score matrix properties: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Nontrivial part

- The non-trivial part can be seen as (min, +) matrix product ($\mathrm{d}_{\mathrm{A}|\mathrm{B}| \mathrm{C}}$ are now the nontrivial parts of the corresponding distribution matrices):

$$
d_{C}(i, k)=\min _{j}\left(d_{A}(i, j)+d_{B}(j, k)\right)
$$

- Explicit form, naive algorithm: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Explicit form, algorithm that uses highest-score matrix properties: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Nontrivial part

- The non-trivial part can be seen as (min, +) matrix product ($\mathrm{d}_{\mathrm{A}|\mathrm{B}| \mathrm{C}}$ are now the nontrivial parts of the corresponding distribution matrices):

$$
d_{C}(i, k)=\min _{j}\left(d_{A}(i, j)+d_{B}(j, k)\right)
$$

- Explicit form, naive algorithm: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Explicit form, algorithm that uses highest-score matrix properties: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Implicit form, divide-and-conquer: $\mathrm{O}\left(\mathrm{n}^{1.5}\right)$

Divide-and-conquer multiplication

c-blocks and relevant nonzeros

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros

C-block sized $h \times h$

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros

C-block sized $h \times h$

Divide-and-conquer multiplication

Splitting relevant nonzeros in D_{A} and D_{B} into two sets at a position $j \in[0: N]$, we get numbers

- $\delta_{A}(j)$ of relevant nonzeros in D_{A} up to column $j-\frac{1}{2}$
- $\delta_{\mathrm{B}}(\mathfrak{j})$ of relevant nonzeros in D_{B} starting at row $j+\frac{1}{2}$

Divide-and-conquer multiplication

 j-blocks
Example (j-blocks)

Definition (Δ-sequences)
δ 's don't change inside a j-block \Rightarrow

$$
\begin{aligned}
& \Delta_{\mathrm{A}}^{\square}(\mathrm{d})=\underset{\mathrm{j} \in \mathcal{J} \square}{\mathrm{a}}(\mathrm{~d}) \\
& \Delta_{\mathrm{B}}^{\square}(\mathrm{d})=\underset{\mathrm{B}}{\operatorname{any}} \delta_{\mathcal{T}}^{\square}(\mathrm{j}) \\
& \delta_{\mathrm{B}}^{\square}(\mathrm{j})
\end{aligned}
$$

Divide-and-conquer multiplication

 j-blocks
Example (j-blocks)

Definition (Δ-sequences)
र's don't change inside a j-block \Rightarrow

$$
\begin{aligned}
\Delta_{\mathrm{A}}^{\square}(\mathrm{d}) & =\operatorname{any}_{\mathfrak{j} \in \mathcal{J}^{\square}(\mathrm{d})} \delta_{\mathrm{B}}^{\square}(\mathfrak{j}) \\
\Delta_{\mathrm{B}}^{\square}(\mathrm{d}) & =\underset{\mathfrak{j} \in \mathcal{J}^{\square}(\mathrm{d})}{\operatorname{any}} \delta_{\mathrm{B}}^{\square}(\mathfrak{j})
\end{aligned}
$$

Divide-and-conquer multiplication

Local minima

Definition (local minima)

The sequence

$$
M^{\square}(d)=\min _{j \in \mathcal{J} \square(d)}\left(d_{A}\left(i_{0}, j\right)+d_{B}\left(j, k_{0}\right)\right)
$$

contains the minimum of $d_{A}\left(i_{0}, \mathfrak{j}\right)+d_{B}\left(\mathfrak{j}, k_{0}\right)$ in every j-block.

Divide-and-conquer multiplication

Local minima

Definition (local minima)

The sequence

$$
M^{\square}(d)=\min _{j \in \mathcal{J} \square(d)}\left(d_{A}\left(i_{0}, j\right)+d_{B}\left(j, k_{0}\right)\right)
$$

contains the minimum of $d_{A}\left(i_{0}, \mathfrak{j}\right)+d_{B}\left(\mathfrak{j}, k_{0}\right)$ in every j-block.

We can use M's and Δ 's to compute the number of nonzeros in a C-block.

Divide-and-conquer multiplication

Sequences M for every C-subblock can be computed in $\mathrm{O}(\mathrm{h})$:

$$
\begin{aligned}
& M^{\square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d}), \\
& M^{\square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d})+\bar{\Delta}_{\mathrm{B}}^{\square}(\mathrm{d}), \\
& M^{\square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d})+\bar{\Delta}_{A}^{\mathrm{E}}(\mathrm{~d}), \\
& M^{\square \square}\left(\mathrm{d}^{\prime}\right)=\min _{\mathrm{d}} M^{\square}(\mathrm{d})+\bar{\Delta}_{A}^{\mathrm{Q}}(\mathrm{~d})+\bar{\Delta}_{\mathrm{B}}^{\mathbb{Q}}(\mathrm{d})
\end{aligned}
$$

having $\bar{\Delta}_{A}^{\left(i^{\prime}, k^{\prime}, \frac{h}{2}\right)}(\mathrm{d})-\bar{\Delta}_{\mathrm{B}}^{\left(\mathrm{i}^{\prime}, \mathrm{k}^{\prime}, \frac{h}{2}\right)}(\mathrm{d})=\mathrm{d}^{\prime}$ with $\mathrm{d}^{\prime} \in\left[-\frac{h}{2}: \frac{h}{2}\right]$.

Divide-and-conquer multiplication

- Sequences $\Delta_{A}\left(d^{\prime}\right)$ and $\Delta_{B}\left(d^{\prime}\right)$ can also be determined in $O(h)$ by a scan of the relevant nonzeros for each subblock.
- Knowing $\Delta_{A}\left(d^{\prime}\right), \Delta_{B}\left(d^{\prime}\right)$ and $M\left(d^{\prime}\right)$ for each subblock, we can continue the recursion in every subblock.
- The recursion terminates when N C-blocks of size 1 are left.

Outline

(1) Introduction

- Bulk-Synchronous Parallelism
- String comparison
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Basic algorithm idea

- Start the recursion at a point where there are p C-blocks.
- This is at level $\frac{1}{2} \log p$.
- Precompute and distribute the required sequences Δ and M for each C-block in parallel.
- Every C-block has size $h=\frac{N}{\sqrt{p}}$, and hence requires sequences with $O\left(\frac{\mathrm{~N}}{\sqrt{p}}\right)$ values.
- After these sequences have been precomputed and redistributed, we can use the sequential algorithm to finish the computation.

Assumptions

Assume that:

- \sqrt{p} is an integer.
- Every processor has unique identifier q with $0 \leqslant q<p$.
- Every processor q corresponds to exactly one location $\left(q_{x}, q_{y}\right) \in[0: \sqrt{p}-1] \times[0: \sqrt{p}-1]$.
- Initial distribution of nonzeros in D_{A} and D_{B} is assumed to be even among all processors.

First Step

- Redistribute the nonzeros to strips of width $\frac{N}{p}$
- Send all nonzeros $(\hat{\imath}, \hat{\jmath})$ in D_{A} and $(\hat{\jmath}, \hat{k})$ in D_{B} to processor
$\left\lfloor\left(\hat{\jmath}-\frac{1}{2}\right) \cdot p / N\right\rfloor$.
- Possible in one superstep using communication $\mathrm{O}\left(\frac{\mathrm{N}}{\mathrm{p}}\right)$.

Precomputing M

(1) Compute the elementary (min,+) products $d_{A}\left(o_{x}, j\right)+d_{B}\left(j, o_{y}\right)$ along $\mathrm{j} \in[0: \mathrm{N}]$.

(2) Processor q holds all $\mathrm{D}_{\mathrm{A}}(\hat{\imath}, \hat{\jmath})$ and all $\mathrm{D}_{\mathrm{B}}(\hat{\jmath}, \hat{\mathrm{k}})$
for $\hat{\jmath} \in\left\langle q \cdot \frac{N}{p}:(q+1) \cdot \frac{N}{p}\right\rangle$.
(3) Can compute the values $d_{A}\left(o_{x}, j\right)$ and $d_{B}\left(j, o_{y}\right)$ by using parallel prefix/suffix.
(4) After prefix and suffix
computations, every processor
holds N/p values
$d_{A}\left(o_{x}, j\right)+d_{B}\left(j, o_{y}\right)$
for $j \in\left[q \cdot \frac{N}{\sqrt{p}}:(q+1) \cdot \frac{N}{\sqrt{p}}\right]$

Precomputing M

(1) Compute the elementary (min,+) products $d_{A}\left(o_{x}, j\right)+d_{B}\left(j, o_{y}\right)$ along $\mathrm{j} \in[\mathrm{O}: \mathrm{N}]$.

(2) Processor q holds all $\mathrm{D}_{\mathrm{A}}(\hat{\imath}, \hat{\jmath})$ and all $\mathrm{D}_{\mathrm{B}}(\hat{\mathrm{j}}, \hat{\mathrm{k}})$ for $\hat{\jmath} \in\left\langle q \cdot \frac{N}{p}:(q+1) \cdot \frac{N}{p}\right\rangle$.
(3) Can compute the values parallel prefix/suffix.
(4) After prefix and suffix
computations, every processor
holds N / p values
$d_{A}\left(o_{x}, j\right)+d_{B}\left(j, o_{y}\right)$
for $j \in\left[q \cdot \frac{N}{\sqrt{p}}:(q+1) \cdot \frac{N}{\sqrt{p}}\right]$

Precomputing M

(1) Compute the elementary (min, +) products $d_{A}\left(o_{x}, j\right)+d_{B}\left(j, o_{y}\right)$ along $\mathrm{j} \in[\mathrm{O}: \mathrm{N}]$.

(2) Processor q holds all $D_{A}(\hat{\imath}, \hat{\jmath})$ and all $\mathrm{D}_{\mathrm{B}}(\hat{\mathrm{j}}, \hat{\mathrm{k}})$ for $\hat{\jmath} \in\left\langle q \cdot \frac{N}{p}:(q+1) \cdot \frac{N}{p}\right\rangle$.
(3) Can compute the values $\mathrm{d}_{\mathrm{A}}\left(\mathrm{o}_{\mathrm{x}}, \mathrm{j}\right)$ and $\mathrm{d}_{\mathrm{B}}\left(\mathrm{j}, \mathrm{o}_{y}\right)$ by using parallel prefix/suffix.
(4) After prefix and suffix holds N / p values

Precomputing M

(1) Compute the elementary (min, +) products $d_{A}\left(o_{x}, j\right)+d_{B}\left(j, o_{y}\right)$ along $\mathrm{j} \in[\mathrm{O}: \mathrm{N}]$.

(2) Processor q holds all $D_{A}(\hat{\imath}, \hat{\jmath})$ and all $\mathrm{D}_{\mathrm{B}}(\hat{\mathrm{j}}, \hat{\mathrm{k}})$ for $\hat{\jmath} \in\left\langle q \cdot \frac{N}{p}:(q+1) \cdot \frac{N}{p}\right\rangle$.
(3) Can compute the values $\mathrm{d}_{\mathrm{A}}\left(\mathrm{o}_{\mathrm{x}}, \mathrm{j}\right)$ and $\mathrm{d}_{\mathrm{B}}\left(\mathrm{j}, \mathrm{o}_{y}\right)$ by using parallel prefix/suffix.
(4) After prefix and suffix computations, every processor holds N / p values
$\mathrm{d}_{\mathrm{A}}\left(\mathrm{o}_{\mathrm{x}}, \mathfrak{j}\right)+\mathrm{d}_{\mathrm{B}}\left(\mathrm{j}, \mathrm{o}_{y}\right)$
for $j \in\left[q \cdot \frac{N}{\sqrt{p}}:(q+1) \cdot \frac{N}{\sqrt{p}}\right]$.

Redistribution Step

p vertical strips $\frac{N}{p}$ nonzeros each

$\sqrt{\mathrm{p}}$ horizontal strips with $\frac{\mathrm{N}}{\sqrt{\mathrm{p}}}$ nonzeros each

Analysis

- Computational work bounded by the sequential recursion:
$\mathrm{W}=\mathrm{O}\left((\mathrm{N} / \sqrt{\mathfrak{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{N}^{1.5} / \mathrm{p}^{0.75}\right)$
- Every processor holds $O(N / p)$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.

- $\mathrm{S}=\mathrm{O}(1)$ (parallel prefix)

Analysis

- Computational work bounded by the sequential recursion:

$$
\mathrm{W}=\mathrm{O}\left((\mathrm{~N} / \sqrt{\mathrm{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{~N}^{1.5} / \mathrm{p}^{0.75}\right)
$$

- Every processor holds $\mathrm{O}(\mathrm{N} / \mathrm{p})$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.
- $S=O(1)$ (parallel prefix)

Analysis

- Computational work bounded by the sequential recursion:

$$
\mathrm{W}=\mathrm{O}\left((\mathrm{~N} / \sqrt{\mathrm{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{~N}^{1.5} / \mathrm{p}^{0.75}\right)
$$

- Every processor holds $\mathrm{O}(\mathrm{N} / \mathrm{p})$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.
$\Rightarrow \mathrm{H}=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}}+\mathrm{p}+\mathrm{N} / \sqrt{\mathrm{p}})=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ (if $N / \sqrt{p}>p \quad \rightarrow N>p^{1.5}$)
- $S=O(1)$ (parallel prefix)

Analysis

- Computational work bounded by the sequential recursion:

$$
\mathrm{W}=\mathrm{O}\left((\mathrm{~N} / \sqrt{\mathrm{p}})^{1.5}\right)=\mathrm{O}\left(\mathrm{~N}^{1.5} / \mathrm{p}^{0.75}\right)
$$

- Every processor holds $\mathrm{O}(\mathrm{N} / \mathrm{p})$ nonzeros before redistribution.
- Every nonzero is relevant for \sqrt{p} C-blocks.
$\Rightarrow \mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ communication for redistributing the nonzeros.
$\Rightarrow \mathrm{H}=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}}+\mathrm{p}+\mathrm{N} / \sqrt{\mathrm{p}})=\mathrm{O}(\mathrm{N} / \sqrt{\mathrm{p}})$ (if $N / \sqrt{p}>p \quad \rightarrow N>p^{1.5}$)
- $S=O(1)$ (parallel prefix)

Outline

(1) Introduction

- Bulk-Synchronous Parallelism
- String comparison
(2) Sequential LCS algorithms
- Sequential semi-local LCS
- Divide-and-conquer semi-local LCS
(3) The parallel algorithm
- Parallel score-matrix multiplication
- Parallel LCS computation

Quadtree Merging

- First, compute scores for a regular grid of p sub-dags of size $n / \sqrt{p} \times n / \sqrt{p}$
- Then merge these in a quadtree-like scheme using parallel score-matrix multiplication:

Analysis

- Quadtree has $\frac{1}{2} \log _{2} p$ levels
- On level $l, 0 \leqslant l \leqslant \frac{1}{2} \log _{2} p$, we have
- $p_{l}=\frac{p}{4^{l}}$ (number of processors that work together on one merge)
- $\mathrm{N}_{\mathrm{l}}=\frac{\mathrm{N}}{2^{\mathrm{l}}}$ (block size of merge)
$\Rightarrow w_{l}=\mathrm{O}\left(\frac{\left(\frac{\mathrm{N}}{2^{\mathrm{L}}}\right)^{1.5}}{\left(\frac{\mathrm{p}}{4^{\mathrm{l}}}\right)^{0.75}}\right)=\mathrm{O}\left(\frac{\mathrm{N}^{1.5}}{\mathrm{p}^{0.75}}\right)$
$\Rightarrow h_{l}=\mathrm{O}\left(\frac{\frac{\mathrm{N}}{2^{l}}}{\left(\frac{p}{4^{l}}\right)^{0.5}}\right)=\mathrm{O}\left(\frac{\mathrm{N}}{\mathrm{p}^{0.5}}\right)$

Analysis

- Quadtree has $\frac{1}{2} \log _{2} p$ levels

Hence, we get

- work $\mathrm{W}=\mathrm{O}\left(\frac{\mathfrak{n}^{2}}{\mathrm{p}}+\frac{\mathrm{N}^{1.5} \log \mathrm{p}}{\mathrm{p}^{0.75}}\right)=\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{p}\right)$
(assuming that $n \geqslant p^{2}$),
- communication $\mathrm{H}=\mathrm{O}\left(\frac{n \log p}{\sqrt{p}}\right)$, and
- $S=O(\log p)$ supersteps.

Comparison to other parallel algorithms

W	H	S	References
Global LCS			
$\mathrm{O}\left(\frac{\mathrm{n}^{2}}{\mathrm{p}}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{p})$	[McColl'95]+ [Wagner \& Fischer'74]
String-Substring LCS			
$\mathrm{O}\left(\frac{\mathrm{n}^{2}}{\mathrm{p}}\right)$	$\mathrm{O}\left(\mathrm{Cp}^{1 / \mathrm{C}} \mathrm{n} \log \mathrm{p}\right)$	$\mathrm{O}(\log p)$	[Alves+'03]
$\mathrm{O}\left(\frac{\mathrm{n}^{2}}{\mathrm{p}}\right)$	$\mathrm{O}(\mathrm{n} \log \mathrm{p})$	$\mathrm{O}(\log p)$	[Tiskin'05], [Alves+:06]
String-Substring, Prefix-Suffix LCS			
$\mathrm{O}\left(\frac{\mathrm{n}^{2} \log \mathrm{n}}{\mathrm{p}}\right)$	$\mathrm{O}\left(\frac{\mathrm{n}^{2} \log p}{\mathrm{p}}\right)$	$\mathrm{O}(\log p)$	[Alves+'02]
$\mathrm{O}\left(\frac{\mathrm{n}^{2}}{\mathrm{p}}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{p})$	$\begin{gathered} \text { [McColl'95]+ } \\ \text { [Alves+'06], [Tiskin'05] } \end{gathered}$
$\mathrm{O}\left(\frac{\mathrm{n}^{2}}{\mathrm{p}}\right)$	$O\left(\frac{n \log p}{\sqrt{p}}\right)$	$\mathrm{O}(\log p)$	NEW

Summary and Outlook

Summary

We have looked at a parallel algorithm for semilocal string comparison that is

- communication efficient (in fact, achieving scalable communication),
- work-optimal,
! and asymptotically better than even global LCS computation.
Outlook
- Score matrix multiplication can also be applied to create a scalable algorithm for the longest
increasing subsequence problem.
- Algorithm can be adapted to compute edit-distances.

Summary and Outlook

Summary

We have looked at a parallel algorithm for semilocal string comparison that is

- communication efficient (in fact, achieving scalable communication),
- work-optimal,
! and asymptotically better than even global LCS computation.

Outlook

- Score matrix multiplication can also be applied to create a scalable algorithm for the longest increasing subsequence problem.
- Algorithm can be adapted to compute edit-distances.

Thank you!

Any questions?

