Peter Krusche and Alexander Tiskin

Department of Computer Science

THE UNIVERSITY OF

WARWICK

ParCo 2007

«O» «F»r « =>»

<

DA

e Introduction
@ Bulk-Synchronous Parallelism
@ String comparison

9 Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

e The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

Outline

G Introduction
@ Bulk-Synchronous Parallelism
@ String comparison

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

Q The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
v
it

DA

BSP Algorithms

Bulk-Synchronous Parallelism

Model for parallel computation:

4 L.G. Valiant.
A bridging model for parallel computation.
Communications of the ACM, 33:103-111, 1990.

Main ideas:
@ p processors working asynchronously

@ Can communicate using g operations to transmit
one element of data

@ Can synchronise using | sequential operations.

BSP Algorithms

Bulk-Synchronous Parallelism

@ Computation proceeds in supersteps

@ Communication takes place at the end of each
superstep

@ Between supersteps, barrier-style synchronisation
takes place

Superstep
|

c
S
el
©
I
=
2
=
]
=
S
P
L
2
=
£
©
1]

Barrier-Synchronization

Computation Communication Computation Communication

BSP Algorithms

Bulk-Synchronous Parallelism

Superstep s has computation cost ws and communica-
tion hs = max(hy', h2").

When there are S supersteps:
= Computation work

W:ZWS

1<s<S

H=) hs

1<s<S

= Communication

Formula for running time: T=W+g-H+1-S.

Parallel Prefix in BSP

Definition (Parallel Prefix)

Given n values x1, x2, ..., xn, and an associative

operator ¢, compute the values x1, x1 ® x2, x1 ® x2 & x3,
0op @i:l,Z n Xi-

Fact. ..

Under some natural assumptions, we can carry out a
parallel prefix operation over n elements on a BSP
computer with p processors using W = O(%), H=0(p)
and S =0(1).

G Introduction
@ Bulk-Synchronous Parallelism
@ String comparison

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

Q The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
v
it

DA

The LCS Problem

Definition (Input data)

Let x = x1x2...x;m @and y =y1y>...yn be two strings on
an alphabet X.

Definition (Subsequences)

A subsequence u of x: u can be obtained by deleting
zero or more elements from x.

Definition (Longest Common Subsequences)

An LCS (x, y) is any string which is subsequence of both
x and y and has maximum possible length. Length of
these sequences: LLCS (x, y).

The Semi-local LCS Problem

Definition (Substrings)

A substring of any string x can be obtained by removing
zero or more characters from the beginning and/or the
end of x.

Definition (Highest-score matrix)

The element A(i,j) of the LCS highest-score matrix of
two strings x and y gives the LLCS of y;...y; and x.

Definition (Semi-local LCS)

Solutions to the semi-local LCS problem are represented
by a (possibly implicit) highest-score matrix A(i,j).

Q Introduction
@ Bulk-Synchronous Parallelism
@ String comparison

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

Q The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
-
it

DA

LCS grid dags and highest-score matrices

LCS Problem can be
represented as longest
path problem in a Grid
DAG

String-Substring LCS
Problem =

A(1,j) = length of
longest path from (0, 1)
to (n,j) (top to bottom). c

Extended grid dag

Infinite extension of the LCS grid dag, outside the core
area, everything matches:

The extended highest-score matrix is now defined on
indices [—oo0, +00] X [—00, +o0].

Additional definitions

Definition (Integer ranges)
We denote the set of integers {i,1+1,...,j} as [i:jl.

Definition (Odd half-integers)

We denote half-integer variables using a *, and denote
the set of half-integers {i + 3,i+3,...,j— 3} as (i:j).

Critical point theorem

Definition (Critical Point)

Odd half-integer point (i— Sk %) is critical iff.
ALj)+1=A1—-1,)=A{j+1)=A(1—-1,j+1).

Theorem (Schmidt’95, Alves+'06, Tiskin’05)

@ We can represent a the whole extended
highest-score matrix by a finite set of such critical
points.

@ Assuming w.l.0.g. input strings of equal length n,
there are N = 2n such critical points that implicitly
represent the whole score matrix.

© There is an algorithm to obtain these points in time
O(n?).

Highest-score matrices

NS T S SIS <

O < << m.m4 m!m m
| [] -

I < I NI N NN
- = | @ |

TN M H A
. I

MM NI O|"
L - —

Querying highest-score matrix entries

Theorem (Tiskin’05)

If d(i,j) is the number of critical points (1,7) in the
extended score matrix with i <1 andj < j, then

Querying highest-score matrix entries

Theorem (Tiskin’05)

If d(i,j) is the number of critical points (1,7) in the
extended score matrix with i <1 andj < j, then

Definition (Density and distribution matrices)

The elements d(i,j) form a distribution matrix over the
entries of density (permutation) matrix D with nonzeros
at all critical points (1,)) in the extended highest-score

matrix:
d(i,j) = > DAJ)
(1.5)€ (1N x (0:)

Can compute this efficiently using range querying data
structures.

Q Introduction
@ Bulk-Synchronous Parallelism
@ String comparison

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

o The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
-
it

DA

Sequential highest-score matrix multiplication

Algorithm, Tiskin’05

Given the distribution matrices d5 and dg for two
adjacent blocks of equal height M and width N in the
grid dag, we can compute the distribution matrix d¢ for
the union of these blocks in O(N15 + M).

Sequential highest-score matrix multiplication

Combine critical points by removing double
crossings

“Trivial part” (O(M)):

Sequential highest-score matrix multiplication

Combine critical points by removing double
crossings

“Nontrivial part” (O(N12)):

Nontrivial part

@ The non-trivial part can be seen as (min, +) matrix
product (d, g|c are now the nontrivial parts of the
corresponding distribution matrices):

de(i k) = mjin(dA(i:j) +dg(j, k)

Nontrivial part

@ The non-trivial part can be seen as (min, +) matrix
product (d, g|c are now the nontrivial parts of the
corresponding distribution matrices):

de(i k) = mjin(dA(i:j) +dg(j, k)

@ Explicit form, naive algorithm: O(n3)

Nontrivial part

@ The non-trivial part can be seen as (min, +) matrix
product (d, g|c are now the nontrivial parts of the
corresponding distribution matrices):

de(i k) = mjin(dA(i:j) +dg(j, k)

@ Explicit form, naive algorithm: O(n3)

@ Explicit form, algorithm that uses highest-score
matrix properties: O(n?)

Nontrivial part

@ The non-trivial part can be seen as (min, +) matrix
product (d, g|c are now the nontrivial parts of the
corresponding distribution matrices):

de(i k) = mjin(dA(i:j) +dg(j, k)

@ Explicit form, naive algorithm: O(n3)

@ Explicit form, algorithm that uses highest-score
matrix properties: O(n?)

@ Implicit form, divide-and-conquer: O(n1-)

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

/.
Ol--Fr-+-+-+4

s
1
|

/
|
1
1
1
__|__l._
1

J

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros

Dsp
o O N
N eN\® N\
Ne N SN
\\.. \I \I I ()
DA « ! ! |
s [T C-block sized h x h
|
\.__'L_'l'__'__
A I I :
RS
g L _ - 4 =
f I I I
| | |

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros

Dg
'-\ N\
N e\ N
Ne N '\-
\\.- \| \I 1 *
Dal. s oo
. ["1 == C-block sized hx h
N 1
N o Y - -aT -
N
p N !
i-- -t
1 I 1
| |]

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros

Dg
O \

paly[T T
F-t-+--b— (C_plock sized h x h

|

- ==
|

— 4 —
|
]

Divide-and-conquer multiplication

C-blocks and relevant nonzeros

relevant nonzeros
Dg

Da|.
b — oo
| |

- C-block sized h x h

L — -1

local minimum

Divide-and-conquer multiplication

d-sequences and relevant nonzeros

Dg Splitting relevant nonzeros in D
and Dg into two sets at a position

j € [0: N], we get numbers

R @ 55 (j) of relevant nonzeros in
Cal L Da up to columnj— 3
.____:__4'__ @ 55 (j) of relevant nonzeros in
. Dy starting at row j + 1

Divide-and-conquer multiplication
j-blocks

Definition (A-sequences)
d's don’t change inside a j-block =

AR(d) = any 385()
jeJgo(ad)

AF(d) = any 385()
jeJgo(ad)

u]
Q&
I
i
i

The sequence

MP(d) = min
jegB(d)

(da(io,j) + dg(j, ko))

contains the minimum of da (ig,j) + dg(j, ko) in every
j-block.

«O» «F»r « =>»

<

DA

The sequence

MP(d) = min (da(ig,j) +ds(j. k
(d) L)(allo,j) +dg(j, ko))
j-block.

contains the minimum of da (ig,j) + dg(j, ko) in every

We can use M’s and A’s to compute the number of
nonzeros in a C-block.

DA

Divide-and-conquer multiplication

Recursive step

Sequences M for every C-subblock can be computed in
O(h):

ME (d) = mdin ME(d),

M (d') = min M7(d) + A (d),

Mo (d) = min MP(d) + AR (d),

M® (d) = mdin MB(d) + AR (d) + AR (d)

. ik, 3) ik,
having A, (d) —Ag

&
\
~
=
£
>
~
m
T
N
I

Divide-and-conquer multiplication

Recursive step

@ Sequences Ax(d’) and Ag(d’) can also be
determined in O(h) by a scan of the relevant
nonzeros for each subblock.

@ Knowing Ax(d’), Ag(d’) and M(d’) for each
subblock, we can continue the recursion in every
subblock.

@ The recursion terminates when N C-blocks of size 1
are left.

Q Introduction
@ Bulk-Synchronous Parallelism
@ String comparison

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

e The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
-
it

DA

Basic algorithm idea

@ Start the recursion at a point where there are p
C-blocks.

@ This is at level 3 logp.

@ Precompute and distribute the required sequences
A and M for each C-block in paraIIeI

@ Every C-block has size h = f, and hence requires
sequences with O(%) values.
@ After these sequences have been precomputed and

redistributed, we can use the sequential algorithm
to finish the computation.

Assumptions

Assume that:

@ /pis an integer.

@ Every processor has unique identifier g with
0<qg<vp.

@ Every processor g corresponds to exactly one
location (qx,qy) €[0:p -1 x[0:/p—1].

@ Initial distribution of nonzeros in DA and Dg is
assumed to be even among all processors.

First Step

@ Redistribute the
nonzeros to strips
of width %

@ Send all nonzeros
(1,7) in DA and
(3, k) in Dg to
processor
[G—3) p/NJ.

@ Possible in one

superstep using C _ N
communication p vertical strips JP
o) XN nonzeros each

P b

Precomputing M

@ Compute the elementary
(min, +) products
da(ox,j) + dg(j,oy) along
j € [0:N].

Precomputing M

@ Compute the elementary
(min, +) products
dA(Oij) + dB(jroy) along
j e [0:N].

@ Processor q holds all DA (31,7)
and all Dg (3, k)
forje(q- 5 :(a+1)-).

Precomputing M

@ Compute the elementary
(min, +) products
dA(Oij) + dB(jroy) along
j e [0:N].

@ Processor q holds all DA (31,7)
and all Dg (3, k)
forje(q- 5 :(a+1)-).

© Can compute the values
da(oy,j) and dg(j,oy) by using
parallel prefix/suffix.

Precomputing M

@ Compute the elementary
(min, +) products
dA(Oij) + dB(jroy) along
j e [0:N].

@ Processor q holds all DA (31,7)
and all Dg (3, k)
forje(q- 5 :(a+1)-).

© Can compute the values
da(oy,j) and dg(j,oy) by using
parallel prefix/suffix.

Q@ After prefix and suffix
computations, every processor
holds N/p values

dA(oX'j) + %B(jroy)

forje(q ﬁ:(q+1).%]_

Redistribution Step

. . . N
p vertical strips N nonzeros each v/ horizontal strips with v
P nonzeros each

@ Computational work bounded by the sequential
recursion:

W = O((N/ﬁ)l-S) — O(Nl's/p0'75)

DA

Analysis

@ Computational work bounded by the sequential
recursion:

W = O((N/\/p)15) = O(NL3/p079)

@ Every processor holds O(N/p) nonzeros before
redistribution.

@ Every nonzero is relevant for ,/p C-blocks.

= O(N/,/p) communication for redistributing the
nonzeros.

Analysis

@ Computational work bounded by the sequential
recursion:

W = O((N/y/p)**) = O(N*2/p073)
@ Every processor holds O(N/p) nonzeros before
redistribution.

@ Every nonzero is relevant for ,/p C-blocks.

= O(N/,/p) communication for redistributing the
nonzeros.

= H=0(N/\/p+p+N/y/p)=0(N//p)
(ifN/yp>p — N>pld)

Analysis

@ Computational work bounded by the sequential
recursion:

W = O((N/y/p)**) = O(N*2/p073)
@ Every processor holds O(N/p) nonzeros before
redistribution.

@ Every nonzero is relevant for ,/p C-blocks.

= O(N/,/p) communication for redistributing the
nonzeros.

= H=0(N/p+p+N//p)=0(N//p)
(ifN/yp>p — N>pld)
@ S =0(1) (parallel prefix)

Q Introduction
@ Bulk-Synchronous Parallelism
@ String comparison

Q Sequential LCS algorithms
@ Sequential semi-local LCS
@ Divide-and-conquer semi-local LCS

e The parallel algorithm
@ Parallel score-matrix multiplication
@ Parallel LCS computation

«0O» «Fr «=» «

it
-
it

DA

Quadtree Merging

@ First, compute scores for a regular grid of p
sub-dags of size n/\/p x n/\/p

@ Then merge these in a quadtree-like scheme using
parallel score-matrix multiplication:

Analysis

@ Quadtree has 1 log, p levels

@ Onlevel 1, 0 <1< 3log, p, we have

@ p1 = zr (number of processors that work together on one
merge)

e Ny =1} (block size of merge)

Analysis

@ Quadtree has 1 log, p levels

Hence, we get

@ work W = O(%2 + Nfo,'%?p) =0(n?/p)

(assuming that n > p2),

: : o nlogp
@ communication H = O(NG), and

@ S =0O(logp) supersteps.

Comparison to other parallel algorithms

w H S References
Global LCS

o) o(n) O(p) [McColl'95]+

[Wagner & Fischer'74]
String-Substring LCS

O(%) 0(CpY/Cnlogp) Oflogp) [Alves+'03]

o) O(nlogp) 0(logp) [Tiskin’05],

[Alves+:06]

String-Substring, Prefix-Suffix LCS

o(Mloan) g(nflogr) glogyp) [Alves+'02]

o) o(n) O(p) [McColl’95]+
[Alves+'06], [Tiskin'05]

o) o(™logr) O(logp) NEW

Summary and Outlook

Summary
We have looked at a parallel algorithm for semilocal
string comparison that is

@ communication efficient
(in fact, achieving scalable communication),
@ work-optimal,

I and asymptotically better than even global LCS
computation.

Summary and Outlook

Summary
We have looked at a parallel algorithm for semilocal
string comparison that is

@ communication efficient
(in fact, achieving scalable communication),
@ work-optimal,

I and asymptotically better than even global LCS
computation.

Outlook
@ Score matrix multiplication can also be applied to

create a scalable algorithm for the longest
increasing subsequence problem.

@ Algorithm can be adapted to compute
edit-distances.

Thank you!
Any questions?

	Introduction
	Bulk-Synchronous Parallelism
	String comparison

	Sequential LCS algorithms
	Sequential semi-local LCS
	Divide-and-conquer semi-local LCS

	The parallel algorithm
	Parallel score-matrix multiplication
	Parallel LCS computation

	Conclusion
	

