
www.warwick.ac.uk

AUTHOR: Peter Krusche DEGREE: M.Sc.

TITLE: Experimental Evaluation of BSP Algorithms

DATE OF DEPOSIT: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I agree that this thesis shall be available in accordance with the regulations governing the
University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.

I agree that the thesis may be photocopied (single copies for study purposes only).

Theses with no restriction on photocopying will also be made available to the British Library for

microfilming. The British Library may supply copies to individuals or libraries. subject to a statement

from them that the copy is supplied for non-publishing purposes. All copies supplied by the British

Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on the condition that anyone who consults it

is understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the author’s

written consent.”

AUTHOR’S SIGNATURE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis without
making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my care.

DATE SIGNATURE ADDRESS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Experimental Evaluation of BSP Algorithms

by

Peter Krusche

Thesis

Submitted to the University of Warwick

for the degree of

Master of Science

Department of Computer Science

September 2005



Contents

Acknowledgments vii

Declarations viii

Abstract ix

Abbreviations x

Chapter 1 Introduction 1

Chapter 2 Fundamentals 3

2.1 The BSP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Extensions to the BSP Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 BSP Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Implementation Specific Observations . . . . . . . . . . . . . . . . . . . . . 15

2.6 Our Programming Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3 BSP Benchmarking 23

3.1 Measuring the Processor Speed . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Measuring the Communication Gap . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Measuring the Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Matrix Multiplication 39

4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Input/Output Data Distributions . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Results on Customized Data Distribution . . . . . . . . . . . . . . . . . . . . 46

4.5 Results on Static Data Distribution . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Comparison with PBLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Experiment Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

i



Chapter 5 Longest Common Subsequence Computation 59
5.1 Problem Definition and Simple Algorithm . . . . . . . . . . . . . . . . . . . 60
5.2 Bit-Parallel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Experiments for the Simple Algorithm . . . . . . . . . . . . . . . . . . . . . 68
5.4 Experiments for the Bit-Parallel Algorithm . . . . . . . . . . . . . . . . . . . 75

Chapter 6 Conclusion 81
6.1 Result Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Appendix A The BSPWrapper Framework 87
A.1 Extended Communication Library Interface . . . . . . . . . . . . . . . . . . . 87
A.2 Benchmarking Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix B BSPWrapper Tools Documentation 93
B.1 BSPParam - Bandwidth Modeling . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Parsing BSPWrapper/bspprobe Results . . . . . . . . . . . . . . . . . . . . . 94

Appendix C Communication Benchmark Results 95
C.1 Results on Shared Memory (skua) . . . . . . . . . . . . . . . . . . . . . . . 95
C.2 Results on Distributed Memory, Ethernet (argus) . . . . . . . . . . . . . . . 102
C.3 Results on Distributed Memory, Myrinet (aracari) . . . . . . . . . . . . . . 105

Appendix D Matrix Multiplication Results — Customized Data Distribution 111
D.1 Results on Shared Memory (skua) . . . . . . . . . . . . . . . . . . . . . . . 111
D.2 Results on Distributed Memory, Ethernet (argus) . . . . . . . . . . . . . . . 112
D.3 Results on Distributed Memory, Myrinet (aracari) . . . . . . . . . . . . . . 113

Appendix E Matrix Multiplication Results — Static Data Distribution 114
E.1 Results on Shared Memory (skua) . . . . . . . . . . . . . . . . . . . . . . . 114
E.2 Results on Distributed Memory, Ethernet (argus) . . . . . . . . . . . . . . . 115
E.3 Results on Distributed Memory, Myrinet (aracari) . . . . . . . . . . . . . . 116

Appendix F LLCS Computation — Standard Algorithm 117
F.1 Results on Shared Memory (skua) . . . . . . . . . . . . . . . . . . . . . . . 117
F.2 Results on Distributed Memory, Ethernet (argus) . . . . . . . . . . . . . . . 118
F.3 Results on Distributed Memory, Myrinet (aracari) . . . . . . . . . . . . . . 119

Appendix G LLCS Computation — Bit-Parallel Algorithm 120
G.1 Results on Shared Memory (skua) . . . . . . . . . . . . . . . . . . . . . . . 120
G.2 Results on Distributed Memory, Ethernet (argus) . . . . . . . . . . . . . . . 121
G.3 Results on Distributed Memory, Myrinet (aracari) . . . . . . . . . . . . . . 122

ii



List of Tables

Introduction 1

Fundamentals 3

2.1 Feature comparison between BSP libraries . . . . . . . . . . . . . . . . . . . 13

2.2 Communication interface used on different systems . . . . . . . . . . . . . . 15

BSP Benchmarking 23

Matrix Multiplication 39

4.2 Matrix multiplication — Experimental values of f . . . . . . . . . . . . . . . 44

Longest Common Subsequence Computation 59

5.1 Bit operators in C notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Experimental values of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Sequential computation speedup from using bit-parallel computation . . . . . 78

Conclusion 81

6.1 Experimental result summary . . . . . . . . . . . . . . . . . . . . . . . . . . 83

The BSPWrapper Framework 87

BSPWrapper Tools Documentation 93

Communication Benchmark Results 95

C.1 Computation speed on skua . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.2 Latency on skua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.3 Bandwidth gap on skua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.4 Computation speed on argus . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.5 Latency on argus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.6 Bandwidth gap on argus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.7 Computation speed on aracari . . . . . . . . . . . . . . . . . . . . . . . . 105

C.8 Latency on aracari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

iii



C.9 Bandwidth gap on aracari . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Matrix Multiplication Results — Customized Data Distribution 111

D.1 Efficiency and mean relative prediction error on skua . . . . . . . . . . . . . 111
D.2 Efficiency and mean relative prediction error on argus . . . . . . . . . . . . 112
D.3 Efficiency and mean relative prediction error on aracari . . . . . . . . . . . 113

Matrix Multiplication Results — Static Data Distribution 114

E.1 Efficiency and mean relative prediction error on skua . . . . . . . . . . . . . 114
E.2 Efficiency and mean relative prediction error on argus . . . . . . . . . . . . 115
E.3 Efficiency and mean relative prediction error on aracari . . . . . . . . . . . 116

LLCS Computation — Standard Algorithm 117

F.1 Efficiency and mean relative prediction error on skua . . . . . . . . . . . . . 117
F.2 Efficiency and mean relative prediction error on argus . . . . . . . . . . . . 118
F.3 Efficiency and mean relative prediction error on aracari . . . . . . . . . . . 119

LLCS Computation — Bit-Parallel Algorithm 120

G.1 Efficiency and mean relative prediction error on skua . . . . . . . . . . . . . 120
G.2 Efficiency and mean relative prediction error on argus . . . . . . . . . . . . 121
G.3 Efficiency and mean relative prediction error on aracari . . . . . . . . . . . 122

iv



List of Figures

Introduction 1

Fundamentals 3

2.1 The BSP computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 BSP program execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Practical values of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Bandwidth gap for different communication primitives . . . . . . . . . . . . . 10

2.5 MPI Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

BSP Benchmarking 23

3.1 Matrix multiplication — sequential performance . . . . . . . . . . . . . . . . 24

3.2 LLCS computation — sequential performance . . . . . . . . . . . . . . . . . 25

3.3 Example of communication gap surface . . . . . . . . . . . . . . . . . . . . 28

3.4 Performance of all-to-all exchanges on skua . . . . . . . . . . . . . . . . . . 30

3.5 Performance comparison for all-to-all exchanges on skua . . . . . . . . . . . 31

3.6 Performance comparison on argus (Put and Get) . . . . . . . . . . . . . . . 33

3.7 Performance comparison on argus (Send, all-to-all) . . . . . . . . . . . . . . 34

3.8 Performance on argus/Oxtool (Put (random permutation)) . . . . . . . . . 34

3.9 Performance comparison for all-to-all exchanges on aracari (Put and Get) . 35

3.10 Performance comparison for all-to-all exchanges on aracari (Send) . . . . . 36

Matrix Multiplication 39

4.1 Matrix-multiplication graph and block partitioning . . . . . . . . . . . . . . . 40

4.2 Overpartitioning and matrix data distributions on 16 processors . . . . . . . . 42

4.3 Matrix multiplication — individual processor flop rate F (aracari) . . . . . 44

4.4 Customized data distribution — Speedup on skua (using 16 processors) . . . 47

4.5 Customized data distribution — Predictability on skua, 16 processors . . . . 48

4.6 Customized data distribution — Results on argus . . . . . . . . . . . . . . . 49

4.7 Customized data distribution — Speedup on aracari (using 32 processors) . 51

4.8 Customized data distribution — Predictability on aracari (32 processors) . 52

4.9 Static data distribution — Speedup . . . . . . . . . . . . . . . . . . . . . . 53

4.10 Static data distribution — Predictability . . . . . . . . . . . . . . . . . . . . 54

4.11 Performance comparison with PBLAS . . . . . . . . . . . . . . . . . . . . . 56

v



Longest Common Subsequence Computation 59

5.1 LLCS dynamic programming approach for the strings aaababa and bbabba . 61
5.2 Parallel LLCS: blocked wavefront approach for p = 3 and G = 5 . . . . . . . 62
5.3 Algorithm LLCS(X,Y ,B,R) . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Algorithm PAR LLCS(X,Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 LLCS computation — Dependency of W on grid size factor . . . . . . . . . . 65
5.6 Implementing addition with carry in C++ . . . . . . . . . . . . . . . . . . . 66
5.7 Algorithm BITPAR LLCS(X,Y ,R,B) . . . . . . . . . . . . . . . . . . . . . 67
5.8 Character rate F (skua) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.9 LLCS (small) — Predictions on skua . . . . . . . . . . . . . . . . . . . . . . 69
5.10 LLCS (small) — Predictions on argus . . . . . . . . . . . . . . . . . . . . . 71
5.11 LLCS (small) — Predictions on aracari . . . . . . . . . . . . . . . . . . . . 73
5.12 LLCS computation — Speedup . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.13 Bit-Parallel LLCS — Predictions on skua (MPI, using 8 processors) . . . . . 75
5.14 Bit-parallel LLCS computation using 64-bit integers . . . . . . . . . . . . . . 76
5.15 Bit-Parallel LLCS — Predictions on aracari . . . . . . . . . . . . . . . . . 77
5.16 Bit-Parallel LLCS — Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Conclusion 81

The BSPWrapper Framework 87

BSPWrapper Tools Documentation 93

Communication Benchmark Results 95

Matrix Multiplication Results — Customized Data Distribution 111

Matrix Multiplication Results — Static Data Distribution 114

LLCS Computation — Standard Algorithm 117

LLCS Computation — Bit-Parallel Algorithm 120

vi



Acknowledgments

I would like to thank my supervisor Alexander Tiskin for his support and guidance during my

work. Thanks also to the staff at the Centre for Scientific Computing, who provided access to

the parallel machines used for the experiments. Furthermore, I am grateful to everyone else

who helped me with technical discussions and comments on language and inconsistencies.

vii



Declarations

I hereby declare that this thesis represents my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which

to a substantial extent has been accepted for the award of any other degree at The University

of Warwick or any other educational institution, except where the acknowledgment is made

in the thesis. Any contribution made to the research by others, with whom I have worked at

The University of Warwick or elsewhere, is explicitly acknowledged in the thesis.

Parts of the thesis have been submitted for publication [50, 51].

viii



Abstract

The model of bulk-synchronous parallel computation (BSP) helps to implement portable

general purpose algorithms while maintaining predictable performance on different parallel

computers. In the last few years, frameworks for implementing BSP algorithms were pro-

posed, each having different optimizations and programming models. This work gives an

overview of approaches to implementing BSP algorithms in C/C++ or Fortran and of meth-

ods for predicting their performance. Experiments were run on three parallel machines, using

optimized special purpose communications libraries for BSP algorithms. In the first set of

experiments, communication and computational performance of all three parallel computers

was measured separately to obtain the machine dependent parameters that describe them in

the BSP model. The second and third set of experiments were concerned with measuring

the performance for two common types of algorithms: memory efficient matrix multiplication

and longest common subsequence computation. Based on the experimental results, we com-

pare the performance of the matrix multiplication implementation to an optimized standard

library and study performance predictability. Simple extensions to the standard BSP model

for performance prediction are shown, their accuracy is evaluated and effects that cause

prediction errors are discussed. The results indicate that the performance of BSP algorithm

implementations can be highly dependent on the communication library that is used and

hence compare their performance using different optimized communication libraries on dif-

ferent systems. When using the best suited library on each system, BSP implementations can

achieve predictable performance and efficiency competitive with optimized standard libraries.
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Chapter 1

Introduction

Parallel computing has become the basis for a large part of the research in scientific comput-

ing and other sciences, particularly for applications that require large amounts of data to be

processed efficiently. As high performance parallel computing resources are still quite expen-

sive and usually shared between many users by means of job queuing systems, it is essential

to have a framework for parallel programming that allows the creation of efficient algorithm

implementations, independent of specific communication networks or parallel architectures.

Other important issues are predictability of the running time and ease of debugging and

profiling programs.

There are different theoretical models which claim to achieve all these goals, the most

established being bulk synchronous parallelism (BSP) and various BSP-based models that

were refined for different purposes. BSP allows simple theoretical cost modeling of parallel

algorithms, independently of the underlying communication network or architecture of a

particular parallel computer. As a model for parallel programming, BSP aims to achieve

scalability and portability between different parallel architectures. The structure of BSP

algorithms makes it easier to avoid deadlocks and enables the user to assess communication

and computational costs separately, which is useful for performance profiling and performance

prediction.

In the last few years, several special purpose communication libraries for BSP-style algo-

rithms were implemented, each having a different set of functionality and optimizations, as

well as debugging and profiling tools. As will be shown, the actual performance of a BSP

1



algorithm’s implementation is very dependent on the underlying BSP communications library

and its optimizations.

The aim of this study is to compare different libraries for practical BSP programming

in C/C++ or FORTRAN, evaluate their performance on different parallel computers, and

compare the running times to theoretical results. Therefore, two very common types of

algorithms were implemented and studied under different conditions and on different parallel

machines. A framework for comparing BSP libraries and a portable BSP programming library

was created in C++. This library, despite its rather ‘naive’ implementation on top of MPI,

shows better performance than existing libraries under various conditions. On top of this

framework, a general purpose library with functionality for handling one- and two-dimensional

data was created as a basis for matrix and string algorithms.

The remainder of this thesis is structured as follows. In Chapter 2, BSP and related

models of parallel computation are introduced briefly. In particular, Section 2.3 contains

an overview of approaches to practical BSP programming, and Section 2.6 describes the

programming framework that was used to conduct the experiments for this work. Methods

of BSP benchmarking and a discussion of the communication performance on the parallel

machines that were the basis for all experiments are presented in Chapter 3. The remaining

chapters show results of realistic benchmarks using algorithms for dense matrix-matrix mul-

tiplication (Chapter 4) and computation of the length of the longest common subsequence

of two strings (Chapter 5). The predictability is studied using different libraries and BSP

based performance models. Finally, the results are summarized and an outlook on possible

future work is given in Chapter 6. The appendix contains the documentation of the software

that was created, the full set of experimental results and the bibliography.
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Chapter 2

Fundamentals

2.1 The BSP Model

The BSP model was introduced by Valiant in [63]. The BSP computer is defined as a set

of p identical processor/memory pairs connected by an arbitrary communication network

(see Figure 2.1). The original model uses the time that is needed for a simple arithmetic

operation or a memory access as a base unit for computational costs and specifies the

performance of the communication network relatively to this time unit. We modify this

convention slightly, and include a parameter for sequential computing speed, because this

thesis will be concerned with performance measurements on different processors and also for

algorithms with different primitive operations (e.g. floating point add/multiply or character

comparison). For simplicity, the computation speed is assumed to be constant and equal

M M M M M

Network

P1 P2 Pp...

Figure 2.1: The BSP computer
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Figure 2.2: BSP program execution

for all the processors in the BSP computer. The performance of the individual processors in

the parallel machine is thus characterized by the fixed time f needed to perform a primitive

operation. For floating point operations, the inverse F = 1/f of this parameter is equivalent

to the flop rate. The performance of the communication network is characterized by a linear

approximation, using parameters g and l. The first parameter, g or communication gap,

describes how fast data can be transmitted continuously by the network after the transfer

has started. Its inverse 1/g is equivalent to the effective bandwidth. The communication

latency l is the time overhead that is necessary for starting up communication. Our adapted

BSP model describes a BSP computer with the tuple of parameters (p, f, g, l).

Program execution takes place in single program multiple data (SPMD) style and is di-

vided into supersteps, each consisting of local computations and a communications phase.

At the end of each superstep, the processes are synchronized using a barrier-style synchro-

nization (see Figure 2.2). During the computation phase, all processors perform sequential

computations using the data in their local memory. In the communication phase, data is

sent to the other processors. All the data that is sent during a superstep is received in the

subsequent superstep. Following this scheme, it is sufficient to calculate the computational

and communication costs for each superstep separately, and then the sum of these over all

supersteps to get the overall cost. As communication and computation are fully decoupled,

the following performance model can be used to estimate the running time.

Consider a computation consisting of S supersteps. For each specific superstep 1 ≤ s ≤ S,

let hin
s be the maximum number of data units received and hout

s the maximum number of data

units sent by each processor in the communication phase. Further, let ws be the maximum

4



number of operations in the local computation phase. The whole computation has separate

computation cost W and communication cost H:

W =
S∑

s=1

ws (2.1)

H =

S∑

s=1

hs with hs = max
p

(hin
s + hout

s ) (2.2)

All the communication can be seen to take place in form of h-relations, i.e. collective

communication operations where each processor sends and receives a maximum of h =

max
p

(hin
s + hout

s ) items of data to or from other processors. When implementing BSP-style

communication, this can be used to optimize performance: data items that are sent to the

same destination can be combined to reduce the communication overhead1. This also en-

ables us to assume the communication overhead per superstep to be constant. We assume

the synchronization time to be equal to the latency l for every superstep. The total running

time is given by the sum

T =

S∑

s=1

Ts = f ·W + g ·H + l · S . (2.3)

This is sufficient as a theoretical model for BSP algorithms, and also allows simple perfor-

mance prediction. However, it is worth noting that the assumption of g and l as being

constant is not always true in reality. For small communication sizes h, the overhead caused

by various levels of network protocols can lead to a higher effective value of g. Also, the pro-

gramming model might allow the user to describe the communication in a superstep in form

of messages or individual remote memory access operations. This usually involves overhead

that cannot totally be avoided by implementing message combining. In the next Section,

extensions to the BSP model for describing these effects will be discussed.
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Figure 2.3: Practical values of g on a message passing system

2.2 Extensions to the BSP Model

For more realistic performance prediction in the cases where the BSP model is not sufficiently

accurate, a wide range of different models and approaches exists and has been studied. A

survey of BSP-like and related models is contained in [62], some of which are the Log-

P/LogGP model [19, 7, 1] and the D-BSP model [20, 6]. Different BSP-like cost functions

are evaluated in [5]. Blanco et al. [10] present a complex performance prediction framework,

which also includes support for BSP-like algorithms. Most of these will not be considered

here, as our primary aim is to preserve the simplicity of the BSP model, rather than predict-

ing performance exactly in all possible cases. Nevertheless, there are some simple extensions

to the BSP model that help to improve the accuracy of performance prediction.

The following extensions to the BSP model introduce dependencies of g on the amount

of data that is sent or received. Consider one superstep with communication cost h. In

the standard BSP model, h is the maximum number of data units that are sent or received

1Notice that the superstep structure of BSP algorithms can also be exploited to implement a more effective
message scheduling, prevent contention and achieve optimal usage of the underlying communication layer.
Further performance improvement can be possible on some systems by implementing optimized barrier
synchronization mechanisms [39, 40].
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by any processor. Even if a processor transfers less data, it still has to wait for the others,

as barrier-style synchronizations take place between supersteps. When introducing more

complex models for g, it can become necessary to examine whether the processor that

exchanges the largest amount of data still causes the longest communication time. This can

significantly complicate the performance model. A simple way of avoiding this problem is to

assume balanced communication2.

Separating Communication Startup Costs

Another view on the BSP model can be obtained by rewriting the communication time

formula as follows, introducing the effective communication gap g(h) as a function of the

communication cost per superstep. If l0 denotes the latency time for a barrier-style synchro-

nization, we get:

Tcomm = g · h + l

= g(h) · h + l0 . (2.4)

This is useful to separate the actual communication startup cost for different types of com-

munication from the actual barrier synchronization latency. It can be observed that g(h)

becomes larger when the communication size h in a superstep is low. This behavior shows

very clearly when g is determined by measuring the time for h-relations of different sizes.

Figure 2.3 shows an example for values of g (the values were measured using MPI on a 16

processor cluster system). The communication gap increases drastically for small values of h.

This can be accounted for by introducing the parameters hhalf , which is the minimum com-

munication size where at least half of the optimal bandwidth is obtained, and the asymptotic

communication gap g∞. The effective value of g can then be defined for every superstep:

g(h) =

(
hhalf

h
+ 1

)

· g∞ . (2.5)

2For a model of unbalanced communication and an experimental study, see [48, 49].
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One problem of this approach is that cost analysis can become slightly more difficult, since

not only the overall communication cost for all supersteps must be known, but also the

communication cost in the individual supersteps – each superstep can now have a different

effective value of g.

Including Per-Message Overhead

Another problem arises when the programming model allows the programmer to send mul-

tiple messages in one superstep, or when there are functions for remote memory access

(e.g. put/get primitives). Every message or remote memory access may incur overhead,

depending on the efficiency of the message combining implementation of the communication

library. Different ways of modeling overhead per message are included e.g. in the LogP [19],

BSP* [47] or QSM [59, 32] models. Another related extension to the BSP model is proposed

and discussed e.g. in [57, 37]. The model used here is most similar to BSP*. Suppose each

processor exchanges a total of h data units. We assume that these are sent in messages of

size h∗. Similarly to (2.5), we make g a function of the communication cost per superstep h

and message size h∗ by introducing another parameter o, which specifies the overhead per

message3:

g(h, h∗) =

(
hhalf

h
+

o

h∗
+ 1

)

· g∞ . (2.6)

This approach assumes all messages in a superstep to be of equal size. However, if the

message size varies, the size of the largest message4, or the average message size can be

used for h∗. This is an even greater step away from the simple BSP model, and only

makes sense when the value of h∗, or at least an approximate ratio between h∗ and the

communication cost per superstep h, is known. When using this model, it is necessary to

assume that all processors send messages of similar size. Otherwise, it can become necessary

to find out precisely which processor is causing the longest communication time, because

the communication time also depends on the message size. Let e.g. hhalf = 500 bytes and

3This parameter is equivalent to the parameter N 1

2

from [57, 37], which denotes the message size for which

half of the asymptotic bandwidth is obtained.
4This is sensible because the communication time will presumably be dominated by the time needed for

transferring messages of this size – small messages cause a higher value of g, but also require less data to
be transferred.
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o = 200 bytes. If one processor sends 1000 bytes of data using one message, the transfer

time can be calculated as

g(1000, 1000) · 1000 = 1700 · g∞ .

If another processor sends 500 bytes in five individual messages, this will cause a longer

transfer time:

g(500, 100) · 500 = 2000 · g∞ .

Hence, for using this approach, the communication must be balanced and consist of messages

of similar size.

The additional parameters hhalf and o can also be used to compare BSP communication

libraries. The parameter hhalf can be regarded as a measure for the overhead caused by

network protocols and the message scheduling facilities of a BSP library. A low value of

hhalf indicates that these facilities work efficiently, and that the time necessary for starting

communication is low. High values of hhalf show that a large amount of data needs to be

transferred to make use of the maximum network bandwidth. The parameter o is a measure

for the overhead caused by individual calls to communication primitives. When o is very low

for a certain communication primitive, it does not matter whether a fixed amount of data is

transferred using many ‘small’ calls or one ‘large’ call of the primitive.

Figure 2.4 shows values of g measured5 for two different communication primitives, and

also an approximation using (2.6) (notice that the scale is logarithmic on all axes). These

values were obtained by using the remote memory access primitives put and get to perform

a random permutation and taking communication time samples. Each point on the graph

surface corresponds to the effective value of g for a superstep with communication cost

h, where every processors sends messages of fixed size to exactly one other processor. The

message size axis corresponds to h∗, the message count axis indicates the number of messages

h
h∗

. For the put requests, the value of o is low. This reduces the contribution of the o
h∗

term

in Equation (2.6), making the model similar to Equation (2.5). Put-like communication can

5The values were sampled on an Ethernet based PC cluster that will be introduced as argus in Section 2.4.
The spikes that can be seen in Figure 2.4(a) occurred randomly and are presumably caused by the
communication network being more or less busy.
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Figure 2.4: Bandwidth gap for different communication primitives
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be optimized by combining puts to the same destination. Therefore, many put requests can

be carried out more efficiently on this system and have virtually no per-message overhead.

For executing get requests on an Ethernet-based message passing system, it is necessary

to request the data from the source node before the actual data can be transferred. This

causes an overhead per request and leads to longer transfer times per data element (i.e.

higher values of g) when there are many requests. This type of behavior can be modeled

more accurately using Equation (2.6).

2.3 BSP Programming

There are various approaches to implementing BSP algorithms, each having their specific

drawbacks and advantages. For the scope of this work, only communication libraries for

C/C++/Fortran that support BSP-style communication were taken into consideration. Since

most communication libraries are in principle usable for implementing BSP algorithms, special

attention is directed to libraries that implement optimization methods for BSP algorithms.

A first approach to BSP programming in C/C++ or Fortran might be to use general

purpose communication libraries like MPI [61, 34] or PVM [27], and write programs in ‘BSP

style’. An example is given by Bisseling in [9] and on the corresponding website [8] as project

MPIedupack.

Another approach is to use an implementation of the BSPlib library interface for direct BSP

programming [38, 60]. It was introduced to simplify BSP programming and keep platform

independence by having a common standard. It includes the main primitives for synchro-

nization, remote memory access and bulk synchronous message passing. Furthermore, it

also allows the implementation to have more advanced optimization methods, like optimized

barrier synchronization, combining messages to the same destination [39] and randomized

routing.

Two implementations of the BSPlib standard for C/C++ and Fortran programmers exist.

One of them is the Oxford BSP Toolset (Oxtool) [76]. It has been optimized separately for

message passing, native direct remote memory access (DRMA) and shared memory platforms

– the latter is particularly useful as on some shared memory/DRMA platforms, emulated
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message passing can lead to additional overhead. Oxtool implements optimized message

scheduling controlled by static parameters that have to be determined for each system it

is run on. The distribution package comes with various tools for call-graph profiling and

performance analysis. It also includes support for checkpointing and process migration on

some systems.

The other implementation of BSPlib is the PUB library from Paderborn University [75,

12]. PUB includes some features not present in the BSPlib standard, such as oblivious

synchronization6 and partitioning processors into subgroups. Both these features can lead to

better synchronization performance. The authors of PUB argue that the BSPlib standard is

not sufficient to provide optimal performance for certain collective communication operations.

Consequently, PUB provides optimized communication functionality for broadcasting and

reducing data. Like Oxtool, PUB also includes a graphical tool for profiling.

Another related project is CGMlib [69], an implementation of CGM, a model for parallel

programming similar to BSP. CGMlib runs on top of MPI and provides a high level pro-

gramming interface in C++ for communicating lists of abstract datatypes of constant size.

This differs from the BSPlib approach, where messages contain arrays of bytes that can have

variable length. CGMlib also provides implementations of advanced communication primi-

tives (broadcast, h-relation). There are implementations of various standard algorithms like

sorting and parallel prefix, as well as of several CGM graph algorithms [13] for this library.

Finally, there is a project called SSCRAP (Soft Synchronized Computing in Rounds for

Adequate Parallelization) [24], which provides a C++ library that contains primitives for

synchronization, communication and processor group management. It runs on top of MPI or

Posix Threads. The authors of SSCRAP propose a ‘soft’ synchronization mechanism. They

argue that the latency can be reduced by not performing a full barrier synchronization, and

provide different kinds of synchronization that only require individual processors to wait until

either all of their outgoing messages have been sent or all incoming messages were received.

Algorithm implementations for list ranking, sorting and prefix sums are available.

A distinction between these libraries can be made by comparing the communication prim-

6 Oblivious synchronization requires the number of messages that are expected to be received on each
processor to be known locally and passed to the synchronization function. In general, the processors
would need to exchange this information first.
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itives and advanced features they provide. Simple communication primitives are direct syn-

chronous/bulk synchronous message passing (MP/BSMP) and DRMA. A feature that can

improve performance is processor group partitioning and subgroup synchronization. PUB

and Oxtool include support for process migration; this can be useful when using a BSP

library on a network of workstations. The C++ libraries SSCRAP and CGMlib introduce

the feature of an abstract h-relation, allowing the programmer to describe BSP-style data

exchange operations for abstract data types. A brief comparison between some of these

features is shown in Table 2.1; another list can be found in [24]. Bisseling [9] also gives

a summary of different BSP programming environments and shows benchmark results for

various parallel computers.

Feature Oxtool PUB CGMlib SSCRAP MPI

MP - - • • •
BSMP • • - a b

DRMA • • - • c

Broadcast • • • • •
Abstract h-relation - - • • -
Process groups - • • • •
Process migration • • - - -

aMPI-like non blocking send and blocking receive
bCan be implemented using MPI Isend
cOnly available in MPI-2

Table 2.1: Feature comparison between BSP libraries

Oxtool and PUB have been chosen for our experiments because they implement advanced

optimizations to reduce latency and improve the effective bandwidth. CGMlib and SSCRAP

rely more heavily on optimizations in the underlying communication layer (MPI) and also

have a different programming library interface, thus they can not easily be compared to

PUB and Oxtool using a BSPlib style programming model. A C++ wrapper library, called

BSPWrapper, was created. It provides a front end to BSMP, DRMA, broadcasting and

reduction operations in order to compare the performance of different libraries within the

same algorithm implementations. The documentation of Oxtool includes a warning that its

MPI implementation has rather high latency and only suboptimal performance; however, it

is still used for our experiments, because it is portable to all of the target machines. In

particular, two of the machines used for the experiments have interconnection networks that
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are not directly supported by any of Oxtool’s devices. For the same reason and to ensure

comparability, PUB was also compiled on top of MPI. The only exception was the shared

memory machine, on which modified version of PUB’s shared memory communication in-

terface was used. On the Ethernet system, the only reason for using MPI was the ability to

run the experiments under control of the queuing system. If this were not necessary, Oxtool

and PUB could have both been compiled using their TCP/UDP-IP communication device to

improve performance. On the other hand, this would involve further effort for setting up the

libraries. Further, on many machines that are intended for running production code, MPI

is the only alternative when an installation of Oxtool or PUB is not available. Therefore,

using MPI on an Ethernet system may well reflect the typical usage scenario. Finally, a pure

MPI implementation that provides BSPlib style functionality using non-blocking send/block-

ing receive operations was created to compare the performance of PUB and Oxtool to an

unoptimized library.

2.4 Experimental Environment

All of the experiments were conducted on three different parallel machines at the Centre

for Scientific Computing at the University of Warwick. The first one (skua) is an SGI

Altix shared memory machine with 56 Itanium-2 1.6GHz nodes and a total of 112GB main

memory. The second one (argus) is a Linux cluster with 31 × 2-way SMP Pentium4 Xeon

2.6 GHz processors and 62 GB of memory (2 GB per 2-processor SMP node); it has good

local computation performance but a slow communication network (100 Mbit Ethernet).

The third system (aracari) is an IBM Myrinet cluster with 64 × 2-way SMP Pentium3

1.4 GHz processors and 128 GB of memory (2 GB per 2-processor SMP node). It offers

very good communication performance, but has slow individual processors. The experiments

used up to 32 processors on skua and aracari. The tests on argus had to be restricted

to a maximum of 10 processors, in line with the generally expected usage of this system. As

all three systems are machines used for running production code and require computation

time to be requested using a job queuing system, it could not always be guaranteed to

get the same CPUs for different jobs. Furthermore, the queuing system limits the number
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of processors that are usable for experiments, as jobs requesting too many CPUs stay in

the queue and cannot be executed. Functionality to request nodes connected in a certain

network structure was intentionally not used. Furthermore, the traffic on the communication

network was different every time because other users were running jobs on the remaining

nodes. However, these conditions provide a realistic testing environment and can show well,

how differently optimized communication libraries perform. Table 2.2 shows the low-level

interface used by the libraries on each system.

2.5 Implementation Specific Observations

The Oxford BSP Toolset

The Oxford BSP Toolset was compiled on top of its message passing MPI device. A few

adaptations to its compilation scripts had to be made for it to compile on the SGI Altix

system using the Intel C compiler and the SGI’s shared memory MPI library, and also to link

with the mpich libraries used on the other systems. Changes were made to bspfront.lprl,

bspfrontenv.lprl and bsparch.lprl. Depending on the compiler that was used, further

modifications had to be made to include correct files at certain points. Considering that

the library was last updated in 1998, relatively few changes were necessary. However, a

serious problem for future systems could be its restriction to 128 processors (although the

configuration script allows 1024 processors internally) when using MPI. It is very important

to update the file <Oxtool root>/include/bsp parameters.ascii with correct values

for bandwidth, computational speed and latency. Otherwise, default parameters are used and

only suboptimal performance can be achieved. The Perl script parse bspprobe data.pl

(see Appendix B.2) can be used to extract these parameters from BSPWrapper’s bspprobe

results. Together with mpich-gm on Myrinet [72], certain communication patterns were

Oxtool PUB MPI Library

skua MPI-1 shmem MPI-2
argus MPI-1 MPI-1 MPI-1
aracari MPI-1 MPI-1 MPI-1

Table 2.2: Communication interface used on different systems
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observed to create conditions that can cause a segmentation fault related to the call to

MPI Isend. A workaround for this is to increase the BSP FIFO size (for the benchmark and

matrix multiplication experiments, bspfront -bspfifo 262144 was used, the experiments

from Chapter 5 were run using bspfront -bspfifo 512). On some MPI systems, it is

necessary to call bsp init setup before bsp begin, passing the actual values of argc and

argv. Otherwise a segmentation fault occurs when calling bsp begin.

PUB

On the distributed memory systems, PUB was compiled using its MPI communication device.

On Myrinet there were some stability issues that could only be avoided by picking a send

buffer size that ‘works’. It seemed that the mpich-gm installation used for the experiments

together with PUB could cause data corruption in PUB’s message buffers. This problem

did not occur on the Ethernet system, which used mpich version 1.2.5 [71]. The buffer

size can be adjusted by compiling bspwrapper pub.cpp with -DPUB SENDBUFSIZE=xxx to

initialize PUB with the updated value. On the Myrinet system, a clear drop in commu-

nication performance could be observed for messages of a certain size. This occurs when

PUB switches the sending method for messages too large to fit into the send buffer. For

running on our shared memory machine, the shared memory device of PUB was modified

by adding an adapted version of the Cray/Unicos device and making minor modifications to

cl/shmem common.c|h to replace the enum datatype used for their locking mechanism with

integers. Also, a deadlock condition in the packet transfer mechanism was removed after

correspondence with the PUB authors. The changes can be found at

http://www.warwick.ac.uk/staff/P.Krusche/bsplibraries.html.

MPI Message Passing (MPIMPASS)

The message passing MPI implementation of BSPWrapper uses Isend and Recv to transfer

messages. For each message, a header is transferred when Sync is called. The headers

are transferred either by calls to MPI Alltoall(v) or Isend depending on whether the

C preprocessor definition ISEND HEADERTRANSFER is set. A simple message combining
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Figure 2.5: Communication gap for all-to-all exchange using different MPI primitives

implementation can be activated by defining MPI MAXCOMBINESIZE as the maximum size

of a message that can be combined with other messages. This does not necessarily have

to be the fastest way for transmitting messages, as Figure 2.5 (sampled on skua) shows,

but it turned out to be the one that involves the least programming effort for implementing

BSPlib-style bulk-synchronous message passing. When using mpich-p4 1.2.5 [35, 36] on

argus, problems occurred when mpich’s shared memory segment size was too low. It

can be specified using the environment variable P4 GLOBMEMSIZE [36] before running the

program, but the size of this segment could not be increased beyond a limit of 32 MB. This

problem can also occur on other systems using mpich. Solutions are to recompile mpich

with different settings (if possible), or to reduce the communication cost per superstep.

Different problems occurred when using mpich-gm (Version 1.2.5-10 using gm 1.6.4). This

MPI implementation appears to have difficulties with too many Isend requests. Especially

when using many nodes and for large communication costs, this also caused the Oxtool and

PUB variants of BSPWrapper to terminate. MPIMPASS showed less sensitivity to this issue

after implementing header transfer using MPI Alltoall(v) instead of MPI Isend.

The emulated DRMA layer of BSPWrapper uses these functions to transfer the data and
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is contained in bspwrapper gendrma.cpp. It buffers all Put and Get requests and carries

them out upon synchronization. In the first round, headers for all Get requests are sent

to the nodes that hold the requested data and all the Put data is sent. In the second

round, the Put data is received and the Get requests are processed. In the third and final

round, the data for the Get requests is received. Obviously, this mechanism is not optimal

in terms of latency and overhead. Therefore, it should only be used on systems that do not

provide MPI-2 DRMA primitives, otherwise the MPISHMEM implementation will provide

better performance.

MPI Shared Memory (MPISHMEM)

This implementation is identical to the MPIMPASS implementation except for the DRMA

layer. DRMA is implemented using the MPI-2 functions MPI Get and MPI Put. This has

the advantage that executing the unbuffered primitives (HpPut/HpGet) can be interleaved

with local computations, if the underlying implementation of MPI supports this. On our

shared memory system, DRMA operations generally achieved better performance than MPI’s

message passing functions. No Put combining as in the other libraries takes place on top of

MPI, but Put and Get requests are buffered to preserve the same semantics as in BSPlib.

2.6 Our Programming Framework

As discussed in the previous sections, a wrapper library has been designed for comparing BSP

programming libraries. It was created to provide a uniform front end in C++ for running the

same algorithm implementation on top of every library. If no optimized library is available, the

library can be compiled using MPI-1 or MPI-2, depending on the version that is available on

the specific platform. The library interface is based on the BSPlib standard and provides front

end functions in the C++ namespace BSPWrapper. The reason for creating this wrapper

library, rather than using BSPlib directly, is that C++ was used to create the ‘naive’ MPI

back end libraries and also to implement the algorithms described in Chapters 4 and 5.

Also, small differences between the BSPlib interfaces of Oxtool and PUB (mainly concerning

library initialization) are hidden by the wrapper library. The programming interface will be
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introduced now to clarify the basis for all the software that was used in the experiments.

Further documentation can be found in Appendix A.

Global Variables

/∗ P c o n t a i n s the number o f nodes ∗/
extern int P ;
/∗ Pid i d e n t i f i e s our node ∗/
extern int Pid ;

Notice that these variables only contain valid values after the call to Init().

Initialization and Exit

/∗ I n i t i a l i z a t i o n ∗/
void Init ( int argc , char ∗∗ argv ) ;
void Exit ( ) ;

Init initializes the BSP library. The parameters argc and argv are the command line

parameters given to main, they are necessary because some MPI implementations are not

able to initialize without them.

Exit() frees all buffers used by BSPWrapper and calls the library’s exit function.

Synchronization

/∗ Synch ron i z e ∗/
void Sync ( ) ;

The function Sync is responsible for performing a barrier synchronization and conducts all

buffered communication.

Direct Remote Memory Access (DRMA)

/∗ C o l l e c t i v e r e g i s t r a t i o n / d e r e g i s t r a t i o n ∗/
void PushReg ( void∗ data , int len ) ;
void PopReg ( void∗ data ) ;

/∗ DRMA p r i m i t i v e s ∗/
void Put ( int pid_dest , void ∗ src , void ∗ dest , int offset ,
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int count ) ;
void Get ( int pid_from , void ∗ src , int offset , void ∗ dest ,

int count ) ;

void HpPut ( int pid_dest , void ∗ src , void ∗ dest , int offset ,
int count ) ;

void HpGet ( int pid_from , void ∗ src , int offset , void ∗ dest ,
int count ) ;

The interface for DRMA is based on the BSPlib standard. Every buffer used as a destina-

tion for (Hp)Put or as a source for (Hp)Get has to be registered first with PushReg, which

is a collective operation. After the next synchronization, data can be exchanged by using

buffered (Put and Get) and unbuffered access functions (HpPut and HpGet). After remote

access to the buffer is not needed anymore, it should be freed with PopReg.

When using buffered Put access, data is copied from the source buffer right after the

function call, and not written to the destination until the end of the superstep. This means

all the buffers involved can be reused until the call to Sync. The unbuffered equivalent

HpPut requires the source buffer to remain unmodified and leaves the destination undefined

until the end of the superstep, as it allows the library to start the data transfer right away.

When using buffered Get access, the actual copying takes place at the end of the superstep.

In general it can be said that, at the expense of memory and copying time, the buffered

operations are safer and easier to use.

After the call to PopReg(), the buffer can only be freed after the next Sync() operation,

otherwise the implementation using the PUB library became unstable in some experiments.

Buffers that are not currently used for memory access should not be registered, as this

may increase lookup times and overhead for the DRMA function calls depending on the

implementation.

Bulk Synchronous Message Passing (BSMP)

/∗ BSMP p r i m i t i v e s ∗/
void Send ( int pid , void∗ tag , void∗ message , int count ) ;
void GetTag (int ∗ status , void∗ tag ) ;
void Move ( void ∗ data , int size ) ;
void SetTagSize( int sz ) ;

BSPlib-style bulk synchronous message passing (BSMP, see e.g. [60]) can be used for more
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complex communication patterns that cannot be easily described by DRMA operations. Once

BSMP messages are sent, they will arrive in the next superstep. The tag size has to be fixed

and can be changed in one superstep with SetTagSize. The basic procedure for sending

and receiving messages is illustrated by the following piece of code; it sends 10 bytes of data

to every processor and then receives 10 bytes from every processor.

SetTagSize( sizeof (int ) ) ;
int tag= Pid ;
char data [ 1 0 ]
char receivebuffer [ 10∗P ]

/∗ send data to each p r o c e s s o r ∗/
for ( int p= 0 ; p < P ; ++p )

Send (p , &tag , data , 1 0 ) ;

Sync ( ) ;

int status= 0 ;
while ( status >= 0) {

GetTag ( status , tag ) ;
if ( status > 0)

Move ( receivebuffer [ 10∗ tag ] , status ) ;
}

After the call to GetTag, the variable status contains the length of the message that was

received, or -1 if no messages are left in the queue. The Send function buffers data and all

the buffers passed to it can be reused after the call. Thus, our BSMP interface essentially

has the same semantics as the BSPlib standard. However, as shown in Appendix A, the

MPI version of BSPWrapper also supplies unbuffered BSMP functions, which enable the

improvement of memory efficiency.

Advanced Communications

/∗
Broadcas t one va l u e from p id −> a l l
( c o l l e c t i v e o p e r a t i o n )

∗/
void Broadcast( int pid , int count , void∗ src , void ∗ dest ) ;

/∗
Fo l d i n g w i th o p e r a t i o n

fun ( re s , a , b , l e n )
( c o l l e c t i v e o p e r a t i o n )
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∗/
void Fold ( void∗ src , void ∗ dest , int count ,

void fun ( char∗ , char∗ , char∗ , int ∗ ) ) ;

Some libraries provide predefined primitives for collective communication that have better

performance compared to the implementation of this operation with BSMP/DRMA primi-

tives. Because of this, the following functions from the second draft to the BSPlib standard

were included: The function Broadcast copies data from src on node pid to dest on all

nodes. The function Fold combines data using the operator fun(). The operands to fold

are given by the pointer src on each node, the result is returned in dest on all nodes. The

operator function fun() must accept four arguments. The first pointer receives the result,

the next two are operands. The data pointed to by the int pointer specifies the size of the

data that was specified by count.
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Chapter 3

BSP Benchmarking

This Chapter describes how the parameters of a BSP computer as referred to in Chapter 2

can be determined. Further information on the practical implementation of the benchmarking

and data analysis routines created for this thesis can be found in Appendices A and B.

There are various approaches to obtaining the BSP parameters on a parallel machine. Work

on this problem has been done by the authors of the Oxford BSP Toolset [76], PUB [75] and

by Bisseling [9]. Another related study is [29], where the performance of the remote memory

access functions of various communication libraries (Oxtool, PUB and LAM-MPI [70]) is

compared for implementations of several algorithms. Study [29] also presents a framework

for communication library independent BSP-like programming based on DRMA put and get

primitives. Juurlink and Wijshoff [49] study the predictability of various algorithms using

Oxtool and different performance models. Further benchmarks and work on the validity of

the BSP model are contained in [28, 67].

3.1 Measuring the Processor Speed

The computation speed of an individual processor in a BSP computer is usually determined

by measuring the number of sequential operations of a certain kind it can perform per second.

A very common measure for the computation speed of computers is their flop rate F , which

denotes the number of floating point operations per second that can be performed by a

specific processor. In the following, all ‘flops’ will also correspond to double precision (i.e.
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64-bit) floating point operations. All message sizes will be given in units of double values.

As discussed in Chapter 2, the computation speed of CPUs in a BSP computer is represented

by the inverse flop rate f = 1/F , i.e. the time for one floating point or other arithmetic

operation. Many benchmarking tools for determining the flop rate of a single processor

exist. One example is LINPACK [23, 21], which is based on solving a dense system of linear

equations. Another source for various benchmarks is the Standard Performance Evaluation

Corporation (SPEC) [80].

Both of the optimized BSP libraries require an approximation of F for setting up their

message scheduling. The distribution of the Oxford BSP Toolset therefore includes a tool

called bspprobe that measures the average of the flop rates for a dot product and dense

matrix multiplication using an IJK loop (both using input data that preferably is larger

than the CPU cache size). The PUB library measures an approximation of f when the

user program is started, based on measuring the time for memory copy operations. Our

benchmarking tool measures f in a similar way as bspprobe from the Oxford BSP Toolset.

However, our measurement functions use BLAS [22, 73] for floating point data types, and an

adapted version of the original bspprobe code to measure integer performance. The values
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for f are based on the time for computing a dot product and for dense matrix multiplication.

Tables C.1, C.4 and C.7 in Appendix C contain the values of f that were measured on the

systems introduced in Section 2.4. However, numerous problems can arise when trying to

use these approximations for predicting performance:

• The running time varies for different operations and data types.

• F also depends on other factors, such as the level of the CPU cache hierarchy or main

memory from which data has to be fetched.

• Algorithmic overhead reduces the effective value of F for small problem sizes. There-

fore, the observed values of F and f are functions of the input size.

Figure 3.1 shows the performance of two algorithm implementations for multiplying square

dense matrices. One uses a simple IJK loop, the other runs an optimized implementation

of the level-3 BLAS primitive dgemm from ATLAS [68]. The IJK loop has a performance

peak for matrices that fit into the CPU cache. For larger matrices, performance drops and

becomes constant. The behavior of dgemm is different; it shows much better asymptotic

performance, which is approached from below as the problem size increases.
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In Figure 3.2, the performance of two different algorithm implementations is compared,

both computing the length of the longest common subsequence of two strings. Their basic

common operation is character comparison: the dynamic programming algorithm compares

O(n2) character pairs, and the bit-parallel algorithm does something similar on bit-level, using

a character to bit string mapping (for more information on both algorithms, see Chapter 5).

The simple dynamic programming implementation shows a behavior similar to the IJK loop

for matrix multiplication. It reaches maximum performance until a cache threshold point

is reached, where the amount of data that is needed to be stored in the CPU cache is too

large and cache efficiency decreases. The bit-parallel variant uses a more efficient algorithm

proposed by Crochemore et al. [18], that stores the dynamic programming table in a more

compact form and uses integer operations to compute the values of multiple entries ‘in

parallel’ (notice that this is processor-level parallelism and does not involve any parallelism

on the level of a BSP computer). It also shows a performance drop at a different cache

threshold point, as it stores the data in a more compact form. However, on this particular

system, performance still rises after passing the threshold point. We used C++ to implement

the bit-parallel algorithm. Implementing bit-level data access and addition with carry (see

Chapter 5) using a high-level programming language necessarily causes more overhead for

small sequence lengths.

In conclusion, the value of f can only be considered asymptotically constant. To keep

the simplicity of the BSP model, our approach of obtaining f for a specific algorithm is to

measure the performance of the sequential implementation separately in one run for every

parallel algorithm that is studied. For predicting the performance in Chapters 4 and 5, the

computation phase is timed on one processor to obtain an asymptotic approximation of f .

3.2 Measuring the Communication Gap

The parameter g can be seen as the inverse bandwidth of the communication network between

processors in the BSP machine. It is the time needed to transfer one element of data. For

testing communication performance, units of 8-byte double values are transmitted, because

the same data type is used for local computations in Chapter 4 (Matrix Multiplication). The
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bspprobe tool in its original version from the Oxford BSP Toolset measures g for two kinds

of communication: a cyclic shift, where each processor sends and receives data to/from

exactly one other, and an all-to-all exchange, in which each processor sends data to all the

others. It takes samples for different message sizes and estimates the values of g∞, which it

assumes to be the minimum value of g measured, and o (see Section 2.2 for the definitions).

The value of o (named N 1

2

by the author of bspprobe) is calculated using the ratio between

the maximum and minimum measured gap values gmax/gmin, and the communication cost

hmax for which gmax was achieved:

o =

(
gmax

gmin
− 1

)

· hmax . (3.1)

One problem with this method is that the performance can be dependent on the com-

munication primitive that is used (cf. e.g. [29]). Bspprobe uses the unbuffered hpput

primitive of the BSPlib standard. When it comes to predicting performance, the values of

g∞ and o for get and send can differ from the ones obtained using hpput. Inaccuracies in

the parameter estimations can be caused by spikes of very long communication time, which

were observed on some library and system combinations. An example of this can be seen in

Figure 3.3. Particularly MPI showed such spikes apparently at random. Presumably these

spikes are caused by varying communication network traffic.

A better approach for obtaining the parameters g and l is to measure communication times

for different numbers of messages, and then perform a linear regression for this data (see

Bisseling [9]). If communication time shows approximately linear increase with the number

of messages, the slope of the fitted line gives g and the value at the intersection of this line

with the time-axis, i.e. the time for ‘0 messages’, gives l. This approach has the advantage

of using data for different message sizes to minimize the statistical error when estimating g,

but it also has the drawback of only taking samples for one message size and ignoring the

per-message overhead o.

To get a more precise picture of how well the different communication libraries work, we

measure the performance for different numbers of messages c = h
h∗

(as the communication

cost in this superstep is equal to the product of the number of messages and their size:
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Figure 3.3: Example of communication gap surface measured by our benchmarking tool

h = c ·h∗) and message sizes h∗. The value of g is estimated by measuring the time for one

superstep performing an all-to-all exchange or a random permutation, which is implemented

using multiple Put, Get or Send requests of equal size, equivalent to the messages of size h∗

from Section 2.2. The resulting data can be visualized and compared as shown in Figure 3.3.

The scale of all axes is logarithmic to show more detail in the regions where g does not vary

much. The value of g∞ is determined by taking a weighted average of the sampled data

g̃(h∗, c):

g∞ =
∑

g̃(h∗, c) · ω/
∑

ω . (3.2)

The weight function ω = (c · h∗)3 was chosen to provide reliable results when the data is

noisy. This is equivalent to weighing the measured running times of the superstep with the

squared communication cost, as

g̃(h∗, c) · (c · h∗)3 = g̃(h∗, c) · h
︸ ︷︷ ︸

Tcomm

·(c · h∗

︸ ︷︷ ︸

h

)2 .

We assume that the effective communication gap will attain its largest values for a low
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communication cost per superstep. The value of g for low communication costs is computed

in a similar way, using ω′ = (c · h∗)−3 as the weight for averaging:

gsmall =
∑

g̃(h∗, c) · ω′/
∑

ω′ . (3.3)

The value of hhalf can be obtained using hmin as the lowest communication cost, for which

the communication time was measured:

hhalf =

(
gsmall

g∞
− 1

)

· hmin . (3.4)

The overhead o is determined similarly to hhalf , using weighted samples of g for the maximum

message count and minimum message size gmm (h∗

min is the smallest message size, for which

samples were taken):

gmm =
(∑

g̃(h∗

min, c) · c2
)

/
∑

c2 , (3.5)

o =

(
gmm

g∞
− 1

)

· h∗

min. (3.6)

Bandwidth Results on the Shared Memory System (skua)

On the shared memory system (skua), the best bandwidth (i.e. the lowest value of g) for

Put and Get operations is achieved by the MPI-2 library; neither Oxtool nor PUB show

comparable results. It can be seen in Figure 3.4(a) that the performance of these primitives

for MPISHMEM has a local optimum at a certain communication cost, then the bandwidth

drops and becomes constant. This behavior was only observed on the SGI machine and is

caused by the limited size of its first level cache. The performance drop occurs approximately

once the communication cost exceeds 16kBytes (this matches the level 1 data cache size on

this system). Remote memory Get requests achieve a much better throughput for all-to-all

communication, because they do not cause write conflicts and can make better use of the

machine’s cache. PUB shows a severe bandwidth drop when there is a large number of

(Hp)Get requests. Also, the performance of these primitives is not very good compared to

Oxtool’s (Hp)Get. This can be seen in Figure 3.4(b), which shows that PUB suffers from
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Figure 3.4: Performance of all-to-all exchanges on skua
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communication performance losses starting at a certain message size (approximately 256

doubles) and message count (approx. 128 messages). This behavior was only observed using

Get and HpGet primitives. The performance differences between MPI-2’s and Oxtool/PUB’s

Put primitives are less significant than between their Get functions. Using Put, MPI-2 shows

the best performance for large communication costs. The performance of the Send primitive

is best when using PUB or Oxtool, with slight advantages for PUB, although Oxtool shows

better results for overhead (i.e. lower values of hhalf and o). This shows that the message

scheduling optimizations implemented by PUB and Oxtool can improve performance for large

messages and all-to-all exchanges for many nodes using Put or Send (see Figure 3.5(b)).

The overall behavior is similar on all numbers of processors for which samples were taken. A

listing of all results on skua can be found in Appendix C, Tables C.1, C.2, C.3.

Bandwidth Results on Ethernet (argus)

On the Ethernet system (argus), PUB and Oxtool achieve similar values of g, both better

than the ones obtained using MPI. For a larger number of processors and all-to-all commu-

nication, PUB has slight advantages. The per-message overhead o is particularly low for

(Hp)Put operations (see Figure 3.6(b) and Table C.6). These primitives are obviously the

best choice for implementations which should have predictable performance on this network.

Get operations involve overhead for requesting data from the source node, thus the through-

put does not increase much for a small request size and many requests (see Figure 3.6(a)).

This cannot be avoided and should be considered when implementing algorithms which will

have to run on a parallel computer using Ethernet. The best results on such a system can

be achieved by using Put style communication. It can further be observed that the Send

primitive of PUB has better performance and less per-message overhead than that of Oxtool

(see Figure 3.7). Figure 3.8 shows that for random permutations using Oxtool, overhead

exists for many small put requests (see the ‘bump’ on the right side of the graph). This

occurred reproducibly when running on 10 nodes, and could not be observed for all-to-all

exchanges. However, samples for all-to-all communication were only taken using up to 128

messages, as opposed to 512 messages for the random permutations.
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Figure 3.6: Performance comparison on argus (Put and Get)
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Figure 3.9: Performance comparison for all-to-all exchanges on aracari (Put and Get)
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Bandwidth Results on Myrinet (aracari)

The best results for the communication gap g on the Myrinet system (aracari) were

achieved by Oxtool and MPI, with advantages for Oxtool. PUB has difficulties when the

number of messages is large; the time per element rises slowly when the number of primitive

calls increases. A similar behavior was observed in the experiments from [29]. Also, a clear

‘step’ can be seen in the surface of samples when PUB switches its message transfer method

for messages too large for its message buffer (this problem and related issues with all the

other communication libraries are discussed in Section 2.5). A slight drop in performance

can also be observed on the Ethernet system, though it is less clearly visible there. For all

primitives (see Figure 3.9 and Table C.9), the performance of Oxtool and PUB is better than

for plain MPI when the communication volume (few and/or small messages) is low.

3.3 Measuring the Latency

The communication latency for the BSP computer can be determined by measuring the run-

ning time for the barrier synchronization function of the programming library. This includes
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the time necessary for synchronizing all the processors, and for overhead necessary for re-

ceiving the data when buffered communication operations are used. Thus, it is not enough

to measure the time for a plain call to the synchronization primitive of the communication

library – it is also necessary to measure the time when this synchronization is preceded by

an actual data transfer. The version of bspprobe from the Oxford BSP Toolset measures l

for a plain synchronization without any data transfer (referred to as the ‘low’ synchroniza-

tion latency) and for cyclic shift communication (referred to as the ‘high’ synchronization

latency). Gerbessiotis et al. [29] argue that this is insufficient, since e.g. all-to-all communica-

tion can cause much higher synchronization latencies. Our benchmarking tool measures the

latency for all-to-all communication as well. However, the latency could also vary when using

different communication primitives for the data exchange that precedes the synchronization.

For performance prediction, values of l measured with communication are used whenever

we assume that g is constant. If g is modeled using g = g(h) or g = g(h, h∗) (see Sec-

tion 2.2), we assume the bandwidth parameters hhalf and o describe this kind of overhead

more exactly, and use the value measured without communication (which is equivalent to

the parameter l0 in Equation (2.4) on page 7). Therefore, we do not measure the synchro-

nization latency for different communication primitives, as the parameters hhalf and o are

more significant for comparing overheads of different communication primitives.

Latency on Shared Memory (skua)

On the shared memory machine, Oxtool achieves the lowest latency among all libraries when

communication precedes the synchronization. This is surprising, as PUB was compiled using

an adapted version of its shared memory device and Oxtool – lacking adequate support for

the SGI Altix shared memory architecture – had to be compiled on top of the message passing

functions in MPI. The worst latency, except for all-to-all communication, is achieved by the

‘naive’ MPI-2 based BSP library. The latency results on skua can be found in Appendix C,

Table C.2.
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Latency on Ethernet (argus)

On the Ethernet system, the latency varies strongly between different runs, as the commu-

nication network can be more or less busy and different runs may be scheduled on different

sets of nodes. Thus, only a general picture of latency can be obtained, which shows advan-

tages for Oxtool and very long synchronization times for the MPI library. PUB shows an

interesting behavior: the latency for all-to-all communication is lower than for a cyclic shift,

as was observed in repeated measurements. As distributed memory systems connected by

Ethernet are presumably the interconnection network for which Oxtool and PUB were most

extensively tested and optimized, the gain of these libraries over the naive implementation is

most visible. The latency results on argus can be found in Appendix C, Table C.5.

Latency on Myrinet (aracari)

In the benchmarks on the distributed memory/Myrinet system, PUB generally showed the

lowest latency, Oxtool only showed lower latency when the number of processors was low.

Compared to PUB, the MPI library needs 4–6 times as much time for a synchronization. The

complete results of the latency measurements on aracari can be found in the Appendix

(Table C.8).
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Chapter 4

Matrix Multiplication

Dense matrix multiplication has been chosen as our first practical benchmark. This is for

several reasons: first, the problem and algorithms are relatively simple and well understood.

The number of operations necessary, as well as the theoretical memory requirements, are

easy to calculate. Furthermore, matrix multiplication is of relevance for many applications in

scientific computation. Consequently, this problem can serve as a good practical benchmark

for comparing the predictability and absolute performance that can be achieved by BSP

algorithms using different communication libraries.

The memory efficient matrix multiplication algorithm described in [55] was implemented

in order to study experimentally the effects that different block sizes and data distributions

have on its running time. Further, its performance was compared to PBLAS [74], which

includes a standard parallel matrix multiplication implementation. Benchmarks using a matrix

multiplication algorithm were also conducted in [29]; however, their algorithm differs from

ours as it generates a different communication pattern and is not memory-efficient. Also,

their implementation uses an IJK loop for the local products, which leads to longer local

computation times. We use BLAS, which has better performance and is less dependent on

the CPU cache size.
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4.1 The Algorithm

A simple sequential algorithm for computing the matrix product

C = A · B (4.1)

of two dense n× n matrices A and B uses the formula

cik =

n∑

j=1

aijbjk, having A = [aij ] , B = [bij] , C = [cij ] , (4.2)

with i, j = 1, 2, ..., n. This is equivalent to representing the elementary products as points

of an n × n × n cube, with data broadcasting in two dimensions and data combining by

addition in the third dimension. The basic idea for the parallel algorithm is to partition

the problem into cubic blocks, which correspond to products of smaller matrices. These

products can be computed locally on each processor (see Fig. 4.1). The smaller these blocks

are, the less temporary storage per processor will be used. A smaller block size increases

the required number of supersteps and decreases the communication cost per superstep.

The communication pattern of the algorithm can be controlled by modifying the block size

parameter. For this reason, it seems to be a good choice for studying the differences in

performance of BSP-style communication library implementations.

The matrix multiplication cube is partitioned into a number of blocks q. For simplicity,
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we assume that q1/3 and n/q1/3 are integers. Furthermore, we use values of q > p for

maintaining memory efficiency. These blocks are processed locally on each processor, using

the sequential matrix multiplication functionality from level 3 BLAS. Each cubic block defines

an intermediate product VIJK , which is defined as

VIJK = AIJ · BJK with 1 ≤ I, J,K ≤ q1/3 . (4.3)

AIJ and BJK are the square blocks in A and B at position s · (I − 1) + 1, s · (J − 1) + 1

and s · (J − 1) + 1, s · (K − 1) + 1 of width s = n/q1/3. The temporary results VIJK are

added to obtain the result matrix C:

CIK =

q1/3

∑

J=1

VIJK with 1 ≤ I,K ≤ q1/3 . (4.4)

Hence, the parallel algorithm has three basic steps for computing each intermediate product

VIJK : an input phase for getting the parts of both matrices, followed by local computations,

and finally, an output phase to redistribute the result data.

4.2 Input/Output Data Distributions

Customized Data Distribution

For the first set of experiments, the initial data is predistributed block-cyclically by square

blocks of size n/q1/3. Theoretically, this should lead to the best performance, as the overhead

for getting the input data in each superstep is minimal. Also, when assigning the computation

of CIK block-cyclically, no output phase is necessary when q2/3 mod p = 0, because the

processor which computes all the values of VIJK in one block column J = 1, ..., q1/3 also

stores the corresponding block CIK . If q2/3 mod p > 0, some block columns remain that

are not computed by the processor storing the result, and an output phase is necessary

in approximately
⌈
(q2/3 mod p) · q1/3/p

⌉
supersteps. In the input phase, each processor

has to get two input blocks of size s × s. The input data has to be distributed in every

superstep to retain memory efficiency. For each logical superstep, the implementation uses
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Figure 4.2: Overpartitioning and matrix data distributions on 16 processors

two synchronizations; one for the input and one for the output phase. This yields the

following computation, communication and synchronization costs:

W =

⌈
q

p

⌉

· n
3

q
, (4.5)

H =

⌈
q

p

⌉

· n2

q2/3
· (2 + ⌈(q2/3 mod p) · q1/3/p⌉) , (4.6)

S =

⌈
q

p

⌉

· 2 . (4.7)

The overall running time can thus be computed like this:

T = f

⌈
q

p

⌉

· s3 +

g

⌈
q

p

⌉

· s2 · (2 + ⌈(q2/3 mod p) · q1/3/p⌉) +

l

⌈
q

p

⌉

· 2 . (4.8)

When using hhalf , a communication size hin = 2s2 for the input phases and hout = s2

for the output phases can be assumed. When using the variable bandwidth approximation

g = g(h, h∗), the average message size h∗ can be assumed to be s2. However, if n mod s >

0, there are q2/3 supersteps in which hin = s(n mod s), since the last block column has

smaller blocks, which are transferred row by row. Per-message overhead then causes longer

running times when n is not a perfect multiple of s.
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Static Data Distribution

For the second set of experiments, input and output data are distributed statically in a 2-

dimensional grid of blocks sized n/
√

p × n/
√

p. The modified BSP running time for this

data distribution is:

T ′ = f

⌈
q

p

⌉

· s3 +

g

⌈
q

p

⌉

· s2 ·
(

2 + 1/q1/3 + ⌈(q2/3 mod p) · q1/3/p⌉
)

+

l

⌈
q

p

⌉

· 2 . (4.9)

We now have to account for the fact that an output phase is necessary every q1/3 supersteps.

The intermediate results can be added up and buffered locally, but have to be sent to their

final position every time a block column VIJK is completed. For transmitting the parts

of A and B, the DRMA HpGet primitive of the libraries is used. When
√

p 6= q1/3, the

matrices are transferred row by row. This leads to smaller messages/HpGet requests as the

number of blocks q increases, and can create a more irregular communication pattern. To

use g = g(h, h∗) and to take per-message overhead into account, the communication time

can be estimated as:

hi = 2s2 , ho = s2

Tcomm = g(ho, h
∗) · ho ·

(

1/q1/3 + ⌈(q2/3 mod p) · q1/3/p⌉
)

+

g(hi, h
∗) · hi . (4.10)

The message size h∗ is assumed to be the average of all possible message sizes for a given

combination of s, n and
√

p. When n/
√

p is a perfect multiple of s, complete rows of size s

can be transferred, otherwise much smaller messages arise when a row is fetched from two

different processors. This causes unsteady performance when q is large. The same effect can

lead to small messages when the matrix size n is not a perfect multiple of s. In this case,

a whole block column has rows with width n mod s for both the input matrices and the

output matrix. This causes unsteady performance when q is small. For larger values of q,

43



the value of s decreases, and so does the remainder n mod s. However, these effects should

be suppressed or at least reduced, if the BSP library implements efficient message combining

functionality. Figure 4.2 shows an example where the small messages arise for both data

distributions when using q2/3 = 25 and p = 16.

4.3 Experiments
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Figure 4.3: Matrix multiplication — indi-
vidual processor flop rate F
(aracari)

Table 4.2: Matrix multiplication — Ex-
perimental values of f

The experiments were conducted on the same systems as introduced in Section 2.4. For

each system and library, we ran the matrix-multiplication algorithm for matrix sizes from

100 × 100 to 2000 × 2000 and measured the running time. The number of blocks in the

cube was set to the values q = 33, 43, 53, ..., 93. For larger numbers of processors, the values

q = 33, 43 were left out if they would lead to underpartitioning (making sure that q2/3 > p).

In order to compare the performance to PBLAS, samples were also taken for matrices of

sizes up to 10000 × 10000 using the smallest possible value of q relative to each number of

processors. The values of f were obtained by measuring the computation time separately in

one run (see Figure 4.3). Table 4.2 contains the values that were used for the predictions.

To evaluate the performance of the libraries, we compare the speedup

S = T (p)/T (1) (4.11)
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obtained for different problem sizes, where T (p) denotes the running time of the algorithm

on p processors. All speedups shown here are relative to the running time of the same

algorithm with the same number of overpartitioning blocks on only one processor, in order to

show how much communication overhead is caused by the communication library. However,

if a realistic scalability analysis1 is to be performed, the performance should be compared

to the fastest sequential implementation available on each machine. Therefore, we also list

the peak efficiency (the effective flop rate divided by one processor’s asymptotic flop rate)

achieved by each library in Appendices E and D:

E =
n3

T (p) · p/F . (4.12)

The running time was averaged over 5 runs for each value of q and n. MPI occasionally

showed spikes of very long communication time, which occurred randomly and were proba-

bly due to different traffic on the communications network. For all predictions, the values

corresponding to all-to-all exchanges using the HpGet primitive were used for the parameters

g, hhalf , o and l. This matches the communication pattern of the implementation, assuming

that every processor stores an equal fraction of the input data. The contribution of the

latency l to the running time of the algorithm can be considered negligible in case of the

shared memory machine (skua) and the Myrinet cluster (aracari). Even at the maximum

number of blocks (729) and minimum number of processors (4), there are only 183 super-

steps. Assuming a worst case latency of 2000 µs, the synchronization time only adds up to

0.37 s. In general, l only becomes significant when the communication network has high

latency and the number of supersteps is large2. Using only g = g(h) for prediction does

not improve prediction accuracy, as the communication size per superstep h is always large

and increases quadratically with the matrix size. When including a per-message overhead in

the performance model, the predictions show spikes at the same positions as the measure-

ments. Nevertheless, even when using g = g(h, h∗) to predict the communication times, the

theoretical values deviate from the measurements in many cases. Reasons for that are:

1Other dense matrix multiplication benchmarks on different parallel systems can be found in [64, 43].
2This can be seen well from the results on the Ethernet cluster (argus), where no speedup is achieved

already when q > 8 (see e.g. Figure 4.6(a)). The latency on argus is approximately twenty times as large
as on aracari.
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• The theoretical approximation of g deviates from the real bandwidth values. Particu-

larly on some of our parallel machines, the bandwidth also depends on factors which

were not taken into account, such as the first level cache size on skua. Also, overhead

increases with message size and count on certain system/library combinations.

• The benchmarking experiments on which the predictions are based measured the trans-

fer time for messages of equal size. This is not necessarily true for the matrix multipli-

cation algorithm. Depending on the data distribution, messages of different size can

arise in the same superstep.

• For small overall communication and message sizes, the bandwidth approximation pre-

sumably has the largest error. This error propagates quadratically to the communica-

tion time estimation, as communication costs increase quadratically with the problem

size.

4.4 Results on Customized Data Distribution

The following results were obtained by running the matrix multiplication algorithm on matri-

ces predistributed in the same blocks as used for computation. As discussed in the previous

Section, this constitutes a simple communication pattern and large messages.

Results on Shared Memory (skua)

On skua (Figures 4.4 and 4.5), MPI-2 shows the best overall performance, and Oxtool has

slight advantages for very small matrices. PUB achieves the lowest performance, especially

on 4 nodes. These results can by explained by looking at the communication performance

for all-to-all exchanges using HpGet. PUB’s HpGet primitive induces increasing overhead for

large messages. This particularly affects performance on a lower number of processors, i.e.

when the largest data blocks have to be transferred. If the number of processors increases,

PUB and Oxtool show greater sensitivity to the case when n mod s > 0, which causes q2/3

blocks that have to be transferred line by line. The overhead induced by this effect causes

the spikes that can be seen in Figure 4.4. The best absolute scalability and highest efficiency
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Figure 4.4: Customized data distribution — Speedup on skua (using 16 processors)

is achieved by MPI-2.

The runtime predictability on skua is best when using Oxtool or MPI. The predicted

runtime for MPI is higher than measured, because MPI has a local performance optimum

for a communication size of 16kB per superstep, which is not covered by the performance

model. Oxtool has increasing overhead for higher numbers of messages. This is not included

in our model, therefore the runtime predictions for Oxtool and large values of q and n are

smaller than the measured times. PUB shows the least predictable results, and also the

greatest sensitivity to the communication imbalances introduced by the data distribution on

this system. Figure 4.5 shows an overview of predictions and measured running times on 16

processors. Performance predictability decreases when using a higher number of processors,

but is still acceptable. When using g = g(h, h∗), the mean relative error for MPI-2 is below

20% in most cases.

Results on Distributed Memory, Ethernet (argus)

On argus, both of the optimized libraries clearly show better performance than MPI, in

particular when using many CPUs and when transferring small messages. Because mpich-p4

1.2.5 is the only MPI implementation available on this machine, measurements for p = 4

and q = 8 could not be run with the MPI library, since they caused too large MPI messages

(see Section 2.5 for further discussion). Especially when the communication cost is large, or
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Figure 4.5: Customized data distribution — Predictability on skua, 16 processors
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Figure 4.6: Customized data distribution — Results on argus
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when there are many synchronizations (i.e. for large values of q), the matrix multiplication

algorithm implementation benefits from using an optimized library. There are advantages

for Oxtool if the message size is small. Predictably, there is no or very little speedup for the

matrix sizes under consideration, and the efficiency is below 10% in all experiments.

The predicted running times on 4 processors are much larger than the measured ones.

Only the predictions for MPI match reasonably well. This is presumably caused by the fact

that the effective value of g∞ is lower than the one measured by our benchmarking routine.

As argus is an SMP system, communication between two processors in the same SMP node

takes much less time than communication between different nodes using Ethernet. When

the number of processors is low, many of the block transfers can thus be carried out much

faster than predicted by the benchmark results.
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Results on Distributed Memory, Myrinet (aracari)
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Figure 4.7: Customized data distribution — Speedup on aracari (using 32 processors)

Better speedup than on argus was achieved on aracari (see Figure 4.7). Oxtool achieves

the best scalability for all values of q. For small values of q, PUB and MPI show similar results.

When q becomes larger, there are advantages for PUB. When p increases, the performance

of PUB and MPI’s drops drastically for values of n that are not a perfect multiple of s.

MPI clearly has better performance when the message size is large, PUB performs better

when the message size is small. The best run time predictability is achieved by Oxtool (see

Figure 4.8), especially when using g = g(h, h∗), in which case the predictions are good for

all considered numbers of processors. MPI only produces predictable results if few nodes are

used and per-message overhead is taken into account (g = g(h, h∗)). PUB has the least

predictable performance; obviously the bandwidth gap for PUB shows characteristics which

are not modeled by our approximation of g (see Chapter 3 for a discussion).

4.5 Results on Static Data Distribution

The following results were obtained by running the matrix-multiplication algorithm on ma-

trices distributed statically with storage block size n2/p. The matrices are transferred row

by row, hence the message size is much smaller than it is using predistributed data blocks.

This can be seen as a more difficult benchmark for BSP libraries, as only those with stable
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Figure 4.8: Customized data distribution — Predictability on aracari (32 processors)
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Figure 4.9: Static data distribution — Speedup
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Figure 4.10: Static data distribution — Predictability
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performance for small messages are able to achieve good performance. Thus, the major

difference between the results for the customized data distribution, and those for static data

distribution, are slightly longer running times on all systems. The efficiency is lower, partic-

ularly for small subproblem sizes communication time takes up a higher percentage of the

overall running time. Because of this, there is no speedup at all on argus, although the

overall behavior on argus remains the same: PUB and Oxtool perform similarly, and better

than MPI. On skua and aracari, PUB showed worse performance with this data distribu-

tion, because it has high per-message overhead for HpGet. Also on aracari, performance

and efficiency of MPI improved in some cases and became more stable compared to the

experiments with the customized data distribution. Runtime predictability using a constant

value of g is good only if the number of processors and q are low. Otherwise, per-message

overhead is introduced by the fact that there are more small HpGet requests in every super-

step, than there are when the data is predistributed. On all systems, predictability improves

when using g = g(h, h∗), but is still not as good as for the customized data distribution.

Especially PUB, having increasing values of g as a result of higher per-message overhead

produces running times far beyond the predicted values. However, as in Section 4.4, the

runtime behavior and spikes caused by per-message overhead can be predicted qualitatively

on most systems.

4.6 Comparison with PBLAS

For evaluating the absolute performance of our BSP algorithm, the flop rate achieved using

the customized data distribution was compared to the performance of PBLAS. The PBLAS

[74] library includes an optimized parallel matrix multiplication implementation and is avail-

able on most parallel computers. Figure 4.11 shows the results for all systems (notice that

between n = 2000 and n = 10000, the running time is only sampled in steps of ∆n = 500.

Before n = 2000, the step size is smaller, hence Figure 4.11(a) shows a marker at n = 2000).

The effective flop rate F = n3/T (T denotes the running time) achieved by the BSP algo-

rithm using the smallest value of q is compared to the effective flop rate achieved by PBLAS

for the same matrix sizes. As can be seen, our BSP algorithm only achieves comparable
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Figure 4.11: Performance comparison with PBLAS

performance to PBLAS when using the best suited BSP library for each system.

On the shared memory machine, only the MPI-2 version achieves better or equal perfor-

mance, compared to PBLAS. The flop rate for PUB and Oxtool shows oscillations caused by

the data alignment effects that were described in Section 4.1. For large matrices, the per-

formance achieved by PBLAS decreases, whereas for our implementations it remains stable.

When using 4 processors on the Ethernet cluster, both PUB and Oxtool achieve a slightly

better flop rate than PBLAS above a certain matrix size. Below that size, the performance

is lower but comparable. For larger matrices and higher numbers of processors, PBLAS

achieves much better performance on this system. PBLAS is optimized for reducing the

communication cost involved in the matrix multiplication [14], whereas our algorithm is

optimized for memory efficiency and involves all-to-all style communication. This is obviously

not well suited for being used on Ethernet. Thus, the BSP algorithm only performs well when

using few processors on this system. Since argus is an SMP system, communication is still

relatively inexpensive when using 4 processors, as communication between processor pairs in
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one SMP node is much cheaper than communication using Ethernet.

On aracari, the BSP implementations achieve better performance than PBLAS with

large matrices or when the number of processors is high. Only with small matrices or

when the number of processors is lower does PBLAS achieve better performance than our

implementation.

4.7 Experiment Summary

The performance of our memory-efficient dense matrix-matrix multiplication algorithm was

studied for two different input and output data distributions. As expected, the performance

was better when customizing the data distribution to reduce per-message overhead. However,

when using the best performing BSP library on the systems with the fast communication

networks (Myrinet or shared memory), the running time remained predictable and scalability

was also achieved when using the static data distribution, which induced a more complicated

communication pattern. On the Ethernet system, performance was only good using few pro-

cessors. When using higher numbers of processors, the communication cost became too high

to achieve scalability, as larger parts of the data were transferred using Ethernet rather than

between CPU pairs on a SMP node. This shows that BSP matrix multiplication implemen-

tations can achieve good scalability and do not strongly depend on the data distribution or

communication network when the communication library is suitable and the communication

network has good performance. On message passing systems, an implementation using Put-

like primitives will presumably achieve better performance, as these have less per-message

overhead. On the other hand, the Get-like communication we used is better suited for shared

memory systems, where it induces a memory access pattern that makes best use of the CPU

cache hierarchy. Furthermore, the use of HpGet suggests itself for implementing memory

efficient algorithms with variable input distribution: the HpGet primitive does not involve

buffering and Get-like communication is an intuitive way for implementing different data

distributions.

The best results can be seen on the shared memory machine (skua), where MPI achieves

the best scalability, because its HpGet communication primitive is directly translated to
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remote memory read operations by SGI’s MPI-2 implementation. Oxtool runs on top of

the message passing functionality in MPI, which causes more overhead for transferring data.

PUB shows the worst performance on this system: it transfers the data using a packet

mechanism that needs at least two memory copy operations per data element, and induces

further overhead when the communication size exceeds a certain limit.

All implementations except for PUB achieved good speedup on aracari (Myrinet). PUB

was only able to deliver good speedup when the communication volume was small (in partic-

ular the number of messages), otherwise the performance decreased. The best performance

was achieved by Oxtool and the MPI implementation. For higher values of q and small

matrix sizes, superlinear speedup can occur when the local product blocks fit into the CPU

cache, thus reducing local computation times. Notice that, this speedup is only superlinear

in relation to the sequential version that uses the same data layout, and thus the same over-

head for the input phase. Nevertheless, the efficiency results in Appendices E and D show

that very good efficiency of up to 90% is achieved on aracari when using 4 processors.

On argus (Ethernet), none of the libraries achieved good speedup. For the given matrix

sizes, individual nodes usually were able to perform the multiplication faster than many

nodes in parallel. This is due to the fact that the individual nodes are very fast and the

communication network is slow. The communication time thus becomes the predominant

part of the overall running time. Another factor is the overhead caused by running on top

of MPI. However, PUB and Oxtool showed an advantage over plain MPI, having better and

more stable communication performance throughout all experiments.

On the Ethernet system the approach for minimizing communication cost employed in

PBLAS is more effective. Even the use of an optimized library like Oxtool or PUB for

our simple BSP algorithm does not yield comparable performance. However, the best BSP

libraries on the systems using fast communication networks (MPI-2 on skua and Oxtool

on aracari) always achieved better results for large matrices. Implementing a more effi-

cient BSP algorithm for matrix multiplication, for example, a parallel variant of Strassen’s

algorithm (see e.g. [64, 52, 55]), could further improve the performance results.
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Chapter 5

Longest Common Subsequence

Computation

As a second realistic benchmark for BSP libraries, we chose the problem of computing the

length of the longest common subsequence (LLCS) of two strings. Computing the LLCS,

like matrix multiplication, is a well-studied problem. It can be solved using a simple dynamic

programming algorithm [15], and parallelized on a BSP computer using a wavefront approach

[30, 4]. For our purposes, we extend this approach using the same method as in [3] to use a

variable block size for parallel dynamic programming, which improves the performance espe-

cially when the problem size is large. This method is similar to the overpartitioning approach

for achieving memory efficiency that was used in the previous Chapter. We study this BSP

dynamic programming approach and give a performance model for predicting the running

time. For sequential computation, both a linear space dynamic programming approach and

a more efficient bit-parallel algorithm were implemented. A survey of bit-parallel algorithms

for various kinds of string comparison can be found in [58]. Further related publications are

[18, 45, 46]. Sequential approaches to extract the LCS are proposed in [41, 44]. Crochemore

et al. recently adapted these sequential algorithms to use bit-parallel computation [17].

In our experiments, we only compute the length of the LCS. The LCS itself can be obtained

in a post-processing step. For a simple LLCS algorithm (without bit-parallel computation),

such a post-processing step is described in [26]. Extracting the actual longest common
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subsequence using bit-parallelism can be done in the same asymptotic time by saving the

whole dynamic programming matrix and then running a second sweep of this matrix, using

the method from [16]. A parallel (but non-BSP) LCS algorithm using bit-parallelism and a

linear processor array is studied in [56].

5.1 Problem Definition and Simple Algorithm

Let X = x1x2 . . . xm and Y = y1y2 . . . yn be two strings on an alphabet Σ of constant size

σ. A subsequence U of a string is defined as any string which can be obtained by deleting

zero or more elements from it, i.e. U is a subsequence of X when U = u1u2u3 . . . uk, having

ul = xil and il < il+1 for all l with 1 ≤ l < k. Given two strings X and Y , a longest

common subsequence (LCS) of both strings is defined as any string which is a subsequence

of both X and Y and has maximum possible length. We consider the problem of finding the

length of such a sequence, which will be denoted as LLCS(X, Y ).

The basic dynamic programming algorithm for this problem defines the dynamic program-

ming matrix L0...m,0...n as follows (see also [41, 15]):

Li,j =







0 if i = 0 or j = 0,

Li−1,j−1 + 1 if xi = yj,

max(Li−1,j, Li,j−1) if xi 6= yj .

(5.1)

The value Li,j is equal to LLCS(x1x2 . . . xi, y1y2 . . . yj). Using dynamic programming [15],

the values in this matrix can be computed in O(mn) time and space. When computing L

row by row, we can reduce the space requirement to O(n), as we only need to store the

current and previous rows Li−1,· and Li,· at any given moment. Figure 5.1(a) shows an

example for the dynamic programming matrix, and Figure 5.3 shows the algorithm used for

local computation.

The problem of computing the LLCS is equivalent to finding the length of the longest path

from (0, 0) to (m,n) in a grid directed acyclic graph as in Figure 5.1(b). This graph has

the vertices V = {(i, j) | 0 ≤ i ≤ m and 0 ≤ j ≤ n}. All vertical edges (i, j − 1) → (i, j)
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and horizontal edges (i− 1, j) → (i, j) have weight 0. The diagonal edges (i− 1, j − 1)→

(i, j) have weight 1 if xi = yj (shown in blue); otherwise their weight is 0. The graph

representation shows data dependencies more clearly: to compute each element Li,j with

0 < i ≤ m and 0 < j ≤ n, we need the values of Li−1,j, Li,j−1 and Li−1,j−1.

For deriving a BSP algorithm, we use a simple parallel algorithm for grid DAG computation.

The matrix L is partitioned into a grid of rectangular blocks with size (m/G)×(n/G), where

the parameter G specifies the grid size. This enables us to compute L in 2G−1 parallel steps.

The data in all blocks on the wavefront (shown in dark blue in Figure 5.2(a)) only depends

on the data in the blocks of the previous wavefront (shown in light blue). Therefore, these

blocks can be processed in parallel. Figure 5.2(b) shows that this process takes 9 parallel

steps on 3 processors when G = 5. The parallel algorithm is shown in Figure 5.4. Array

B of length m + 1 contains the values L(0, . . . ) for each local block. Hence, input/output

values in B can be kept locally. They correspond to the data that is highlighted green in

Figure 5.2(a). The corresponding array R of length n + 1 containing L(. . . , 0) has to be

transferred to the processor that is assigned the computation of the block to the right of the

current block in the block grid. This communication pattern is equivalent to a cyclic shift.

After running the parallel algorithm, processor G mod p holds the part of L which contains

the LLCS.

The algorithm shown in Figure 5.4 requires (2G− 1) ·G/p supersteps, assuming the ratio

(a) Dynamic programming matrix (b) Grid DAG

Figure 5.1: LLCS dynamic programming approach for the strings aaababa and bbabba
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(a) (b)

Figure 5.2: Parallel LLCS: blocked wavefront approach for p = 3 and G = 5

α = G/p to be an integer. This simplifies the following performance analysis. Moreover,

there is no performance advantage in considering the case where G is not a perfect multiple

of p. Between the supersteps, we need to transfer the rightmost column and bottom row of

the local part of L (highlighted in red and green in Figure 5.2(a)). When subproblem blocks

are assigned to processors block-cyclically as in Figure 5.2(b), the values in the bottom row

and the corresponding part of string X can be kept locally and do not have to be transferred

using the communication network, because one processor is always assigned blocks from the

same column. For simplicity, we assume that the strings have equal length n = m and that

the input data distribution is block-cyclic with blocks of size ⌈n/G⌉.

In estimating the computation time, we need to consider that in general there are less than

G/p blocks in every wavefront. The number of blocks only equals G/p when the wavefront

reaches the diagonal of the block grid. Still assuming that G = αp with an integer α, we
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Require: X, Y are the input sequences, B contains the values L(0, . . . ) and has length
m + 1, R contains L(. . . , 0) and has length n + 1

1: initialize pcl to point to an array of m + 1 integers
2: initialize ppl to point to B
3: for j = 1 to n do
4: pcl(0)← R(j)
5: for k = 1 to m do
6: if xk = yj then
7: pcl(k)← ppl(k − 1) + 1
8: else
9: pcl(k)← max(ppl(k), pcl(k − 1))

10: end if
11: end for
12: R(j)← pcl(m + 1)
13: Swap pointers pcl and ppl
14: end for
15: Set B = ppl if necessary
16: return (B,R) {B(m + 1) contains the LLCS}

Figure 5.3: Algorithm LLCS(X,Y ,B,R)
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· (pα(α + 1)− α) . (5.2)

The theoretical behavior of the computation cost as a function of α is shown in Figure 5.5.

The asymptotic cost decreases for p > 1 and increasing α, but becomes unstable when n

is not a perfect multiple of αp. Input data and results have to be transferred for G(G − 1)

blocks (results have to be transferred for all blocks in the grid not located at the right border,

and input data for the second string has to be fetched for all blocks not on the diagonal).

Individual characters are stored in one byte (thus log2 σ = 8), and 4-byte/32-bit integer

values represent the dynamic programming matrix elements. Each processor sends a column

of matrix elements and receives a part of the second input string, which is distributed block-

63



Require: X, Y are the input sequences, p contains the number of processors, pid the
current processor (counting from 1) and G = αp the grid size.

1: Allocate arrays Rj of size ⌈n/G⌉+ 1 and Bj of size ⌈m/G⌉ + 1 for j = 1, . . . , ⌈G/p⌉
2: for diag = 1 to 2G− 1 do
3: for block = 1 to G/p do
4: x← (block − 1) · p + pid

5: y ← diag − x + 1
6: Compute local block width bw ≈ m/G and height bh ≈ n/G
7: if (x, y) is inside the grid (1, 1), . . . , (1, G), (2, G), . . . , (G,G) then
8: Get the parts Xp and Yp of X and Y that correspond to the dynamic program-

ming subproblem at position (x, y)
9: Synchronize

10: Call LLCS(Xp, Yp, Bblock , Rblock )
11: if x = G and y = G then
12: llcs← Bblock (bw)
13: end if
14: Put Rblock to processor (pid + 1) mod p
15: else
16: Synchronize
17: end if
18: end for
19: end for
20: return llcs {On processor G mod p, broadcast if necessary}

Figure 5.4: Algorithm PAR LLCS(X,Y )

cyclically1. We further introduce a factor of 1/64, as g was measured in 64-bit double/s.

Hence we have to multiply the theoretical communication cost with this factor to obtain the

practical value:
hout

︷︸︸︷

32 +

hin

︷ ︸︸ ︷

log2 σ

64
=

5

8
.

Altogether, the BSP running time is

T (α) = f · (pα(α + 1)− α) ·
⌈

n

αp

⌉2

+ g · 5
8
· α(αp − 1)

⌈
n

αp

⌉

+ l · (2αp − 1) · α . (5.3)

1Another method would be to broadcast the second input string to all processors at the beginning. This is
not done here to preserve memory-efficiency when working on long strings of equal length.
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Figure 5.5: LLCS computation — Dependency of W on grid size factor

The parameter α can be used to tune the performance of the algorithm. Knowing a

minimum block size b for which the sequential algorithm achieves good performance (e.g.

the processor’s cache size), the critical value of α can be pre-calculated before computation:

α =
5 · n
p · b . (5.4)

This choice of α ensures that all the data necessary for computing one row of a dynamic

programming matrix block can be stored in a block of size b. In the experiments, this

method established good balance between having to minimize overhead from partitioning

small problems into too many blocks, and achieving higher computation speed when the

data for the local computations can be stored in the CPU cache.

5.2 Bit-Parallel Algorithm

Computing the LLCS using the standard dynamic programming approach is by far not the

fastest method available. Let w be the bit-length of a machine word. Assuming that both

integer and bitwise Boolean operations are available, the sequential computation time can

be reduced by an approximate factor of 1/w using algorithms as proposed by Crochemore et
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Operator Notation Example

Bitwise-not (or one’s complement) ∼ ∼ 1101 = 0010
Bitwise inclusive-or ||| 1101 ||| 1010 = 1111
Bitwise-and & 0010 & 1010 = 0010
Addition with carry + 1101 + 0011 = 0001; carry = 1

Table 5.1: Bit operators in C notation

al. [18] or Allison and Dix [2] (see the beginning of this Chapter for more references to related

literature). The basic idea of these algorithms is to work with the differences in the dynamic

programming matrix ∆L(i, j) = L(i, j)−L(i− 1, j). These differences can have either the

values 0 or 1, and thus be encoded as a bit string. The different bit-parallel algorithm variants

have a general structure in common: they compute ∆L(i, j) as a function of ∆L(i − 1, j)

and a mapping M(x), which maps a character x to a bit string of length n (i.e. the height

of the dynamic programming table). Performance is gained because the values of ∆L(i, j)

can be computed using integer and bitwise Boolean operations, which work on w bits in

parallel. Our implementation uses the algorithm from [18]. The other variants differ from

this one in the number of operations used in the recurrence. However, all variants include

integer operations that can create a carry. This keeps the data dependence pattern of the

basic dynamic programming algorithm and makes the same wavefront approach necessary

that was used in the previous section. Different methods for implementing the mapping

M(x) are discussed in [46]. We use the method of storing all the bit-vectors in an array of

size O(n · σ), which is simple and fast, but also memory inefficient.

unsigned long add_with_carry(
unsigned long a ,
unsigned long b ,
unsigned long & c ) {
unsigned long r= a + b + c ;
c= ( (a > ULONG_MAX − c )

| | (a + c > ULONG_MAX − b )
) ? 1 : 0 ;

return r ;
}

Figure 5.6: Implementing addition with carry in C++

To denote the bitwise Boolean operations not, and and or, we use the same notation as

66



in the C programming language (see Table 5.1). Figure 5.7 shows the sequential algorithm

in more detail. It outputs not the LLCS, but the carry values B and the values of R = ∼

∆L(m). It gets values B and R as input, which are initialized with B ← 0 and R← 2n−1.

Moreover, we introduce the operation of an addition with carry, a C++ implementation of

this operation is shown in Figure 5.62. After running the sequential algorithm, R contains

the values of ∼ ∆L(m, . . . ). The LLCS can then be obtained by counting the number of

zeros in R, as is proven in [18].

Require: X, Y are the input sequences, B is an array of carry bits of length m, R contains
∼ ∆L(0)

1: ∀γ ∈ Σ.M(γ)← 0
2: for j = 1 to n do
3: M(yj)←M(yj) ||| 2j−1

4: end for
5: for k = 1 to m do
6: R← (B(k) + R + (R & M(xk))) ||| (R & (∼ M(xk)))
7: B(k)← carry
8: end for
9: return (R,B)

Figure 5.7: Algorithm BITPAR LLCS(X,Y ,R,B)

The parallel version uses the same dynamic programming scheme as the simple algorithm

in Section 5.1. In our wavefront approach from Figure 5.2(a), the carry values B will be

passed downwards (green) and the parts of R to the right (red). To obtain the LLCS, the

zero bits in all parts of R at the right side of the block grid are counted and summed up. This

can be done in one additional superstep. We introduce a modified asymptotic computation

speed f ′, which will have a value of approximately 1
wf (see Table 5.4 on page 78 for practical

speedups). In our implementation, the asymptotic computation speed is obtained for larger

problem sizes compared to the standard sequential LLCS algorithm, because computing the

mapping table M (see lines 1 and 2 in Figure 5.7) introduces a constant amount of overhead

that depends on the alphabet size. Furthermore, our method of storing M completely

consumes an amount of memory that is exponential in the alphabet size. For alphabets

2This implementation is likely to be compiled to code which includes branching instructions on some systems
and includes redundant additions and comparisons to retrieve the carry. For optimal performance, it should
be replaced by assembly code, this usually allows direct carry retrieval.
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larger or equal to 216 (the alphabet size for the Unicode alphabet), match vector retrieval

should be implemented differently [46]. However, for the experiments with the bit-parallel

algorithm, we use an alphabet size of 8 characters (i.e. 3 bits per character). Therefore, the

simple method is sufficient. The BSP running time for the parallel dynamic programming

algorithm using bit-parallel computation is obtained similarly as described in the previous

Section. Having a communication cost factor of

1 + log2 σ

64
=

4

64
=

1

16
,

we get:

T (α) = f ′ · (pα(α + 1)− α) ·
⌈

n

αp

⌉2

+ g · 1

16
· α(αp − 1)

⌈
n

αp

⌉

+ l · ((2αp − 1) · α + 1) . (5.5)

5.3 Experiments for the Simple Algorithm

The experiments for the LLCS algorithms were carried out on the same systems that were

introduced in Section 2.4. The alphabet size σ was set to 8 characters. Each character is

stored in one byte to avoid overhead for data access. The dynamic programming table used

32-bit integer values. Input strings were generated randomly and had equal length. The first
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Bit parallel LLCS
LLCS
4.4G char/s
64M char/s
130M char/s

Simple Algorithm
skua 0.008 ns/op 130 M op/s
argus 0.016 ns/op 61 M op/s
aracari 0.012 ns/op 86 M op/s

Bit-Parallel Algorithm
skua 0.00022 ns/op 4.5 G op/s
argus 0.00034 ns/op 2.9 G op/s
aracari 0.00055 ns/op 1.8 G op/s

Figure 5.8: Character rate F (skua) Table 5.3: Experimental values of f

68



10000 20000 30000 40000 50000 60000
String length

0.01

0.10

1.00

R
un

ni
ng

 ti
m

e 
[s

] (
lo

ga
rit

hm
ic

)

 α=1 err 3.99%
 α=2 err 4.20%
 α=3 err 5.70%
 α=4 err 7.46%
 α=5 err 9.17%
prediction  α=1
prediction  α=2
prediction  α=3
prediction  α=4
prediction  α=5

(a) MPI, 16 processors, g = g(h)
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Figure 5.9: LLCS (small) — Predictions on skua
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set of experiments was run using string lengths between 8192 and 65536, and values of the

grid size parameter α between 1 and 5, to study the predictability for small problem sizes.

Since we use the put primitive, which has low per-message overhead, using the variable

bandwidth model g = g(h, h∗) does not improve prediction accuracy. Furthermore, there

is only one put request per superstep. However, using g = g(h) reduces the prediction

error for small problem sizes. The values of l, g and hhalf measured for conducting random

permutations using the put primitive were used to create the predictions, as this best matches

the implementation’s communication pattern. Table 5.3 shows the values of f used for

prediction. As in the previous Chapter, they were obtained by measuring local computation

times for one run.

Altogether, the prediction results are much better than the ones obtained for matrix

multiplication. The first reason for this is that communication cost only increases linearly

with the problem size. Hence, the performance model is less sensitive to fluctuations in

the values of g and l than the model for matrix multiplication, in which communication

costs increase quadratically with the input size. Furthermore, the communication pattern of

the LLCS algorithm is simpler and more regular. Moreover, the largest part of the data is

exchanged using put requests that achieve more predictable performance on all systems. A

complete listing of results can be found in Appendix F.

Results on Shared Memory (skua)

On skua, the predictions for Oxtool and MPI matched the experimental results very well (see

Figure 5.9). The predicted running times were lower than the measurements using PUB, the

same behavior was observed for the matrix multiplication algorithm. Extending the model

by using hhalf improves the prediction quality on this system. This can be seen clearly when

the number of processors is high and the communication size is small. Good efficiency of up

to 80% is achieved by Oxtool and MPI. PUB only achieves approximately 60% because its

effective communication bandwidth is lower.
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(a) Oxtool, 4 processors, g constant
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Figure 5.10: LLCS (small) — Predictions on argus
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Results on Distributed Memory, Ethernet (argus)

On argus, the best predictability using a constant value of g is achieved by Oxtool due to

its low synchronization latency. The prediction results for PUB and MPI can be improved

and made similar or better compared to Oxtool by using g = g(h) (see Figure 5.10). The

advantages of the optimized libraries for small messages can be seen particularly well on this

system: the run time for the MPI version improves drastically when using smaller values of

the grid size parameter α. When α is larger, the dynamic programming algorithm particularly

benefits from a low synchronization latency. MPI has very high latency, and thus produces

long running times even for small problem sizes. Best efficiency and superlinear speedup on

4 processors is achieved by Oxtool and PUB with slight advantages for Oxtool. MPI cannot

benefit from the lower computational costs for higher values of α, as these are compensated

by higher synchronization costs.

Results on Distributed Memory, Myrinet (aracari)

On aracari, a larger number of processors leads to greater prediction errors when using

g = g(h) to predict the running time for PUB or Oxtool. Obviously, the effective overhead for

small communication sizes is lower than the value of hhalf predicts. The best predictability is

achieved by MPI. When using MPI and g = g(h), the mean relative prediction error is smaller

than 5% for all numbers of processors. Best efficiency is achieved by PUB and Oxtool for

similar reasons as on argus. PUB benefits from having a low synchronization latency, Oxtool

has the better effective bandwidth. On average, both achieve similar performance. The

performance for MPI drops when the number of processors is larger, as its synchronization

latency becomes higher.

Speedup for Larger Problems

The performance of the algorithm was evaluated by running it on larger problems and using an

optimized value of α from Equation (5.4). The speedup results are shown in Figure 5.12. It

can be seen that there are few differences between MPI, PUB and Oxtool for large problems.

For short strings, Oxtool and PUB show advantages over MPI on the message passing

systems (aracari and argus), particularly when the number of processors is large. On
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(a) MPI, 16 processors, g constant
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Figure 5.12: LLCS computation — Speedup
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skua, PUB obviously has difficulties when the communication cost is too large, and achieves

substantially lower speedup than MPI or Oxtool. The speedup graphs also demonstrate well

that MPI only achieves comparable speedup to an optimized communication library if the

problem size is large.

5.4 Experiments for the Bit-Parallel Algorithm

The bit-parallel algorithm shows much better local computation performance (see Table 5.4)

on all systems and also has lower communication costs. However, the asymptotic compu-

tation speed on skua is only reached for very large problem sizes (see Figure 5.14). This

system uses 64-bit machine words, which allows a higher degree of bit-parallelism, that obvi-

ously is only exploited gradually with increasing problem size by our high-level programming

language implementation on this system. To explore this further, tests were run on another

64-bit machine, a desktop system named gnoll, which has an AMD Athlon64 processor. On

this system, the software was compiled using the GNU C Compiler [77]. Figure 5.14 shows

that on this same system the bit-parallel variant reaches its peak performance only for larger

problems than the standard algorithm. However, the effect is not as visible as on skua, and

no cache threshold point can be seen. On the other systems (aracari and argus), the

behavior was similar to gnoll (although having a lower speedup, as these systems only use

32-bit words). This leads to the conclusion that these effects are specific to the Itanium-2
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System Sequential computation speedup
skua 34.6 (70.3) (130 M → 4.5 G char-op/s)
gnoll 63.3 (150 M → 9.5 G char-op/s)
argus 47.5 (61 M → 2.9 G char-op/s)
aracari 20.9 (86 M → 1.8 G char-op/s)

Table 5.4: Sequential computation speedup from using bit-parallel computation

System (skua) in combination with the Intel C++ compiler [79]. For calculating the se-

quential computation speedup compared to the standard algorithm on skua, we assume that

the standard algorithm uses block partitioning to work with problem sizes, for which cache

efficiency is achieved (this can be done using an optimized grid size on one processor, see

Equation (5.4) on page 65). Therefore, only a speedup factor of approximately 35 is ob-

tained, instead of 64 from using 64-bit-parallel operations. When comparing the asymptotic

character rate for the standard algorithm to the bit-parallel variant, a speedup factor of 70.3

is obtained.

Supplying the sequential computation code in assembly instead of C++ is likely to im-

prove the performance predictability for this algorithm on skua. However, we still used the

C++ code to ensure portability. As the performance for the problem sizes that arise in our

experiments is not constant using this code (see the discussion above), running times on

skua cannot be predicted accurately using a constant value of f . Figure 5.13 shows that the

predicted running times are smaller than the measured times, especially when the block size

decreases if α is larger or more processors are used. On the other systems, the predictions

were of similar quality as the ones made for the simple LLCS algorithm. Figure 5.15 shows

selected prediction plots. On aracari, PUB shows the same performance drop as before:

when the communication cost becomes larger than approximately 2048 bytes, performance

decreases.

Figure 5.16 shows the speedup results. On all systems, the speedup achieved when using

the bit-parallel sequential algorithm is lower compared to the experiments using the standard

algorithm (however, the running time using the bit-parallel algorithm is always lower than

using the standard algorithm). On the shared memory machine, this is caused by a lower

sequential computation speed for small subproblem sizes (as discussed above). An increased

grid size leads to lower sequential computation performance, as this decreases the subproblem
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Figure 5.16: Bit-Parallel LLCS — Speedup
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size. However, further increasing the problem size on the shared memory system presumably

would yield better speedup.

On the distributed memory systems, the parallel speedup when using bit-parallel computa-

tion instead of the standard algorithm is also lower. Still, good speedup is obtained both on

Myrinet (aracari) and Ethernet (argus). The best performance on argus is achieved by

Oxtool, and the performance of PUB is only slightly worse. On 10 processors, the difference

between plain MPI and the optimized libraries is most visible. When using higher values of

α, PUB and Oxtool achieve better speedup, whereas MPI shows decreasing performance due

to its high overhead for small communication costs. When using 4 processors on aracari,

the performance drop of PUB, starting at a certain communication cost, is clearly visible (see

Subfigure 5.16(c)). When the number of processors and hence the block grid size increases,

the communication cost becomes lower and PUB shows very good performance. When using

a large grid size on aracari, PUB outperforms both MPI and Oxtool.
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Chapter 6

Conclusion

In this work we studied the performance of bulk-synchronous parallel algorithms using opti-

mized special purpose communication libraries. We described extensions to the standard BSP

model that can improve performance predictions, and proposed a mechanism for benchmark-

ing that can reliably be used to obtain standard and advanced BSP parameters. Furthermore,

we conducted experiments for two different kinds of algorithms, matrix multiplication and

longest common subsequence computation, in order to evaluate the practical performance

of BSP algorithms on different parallel computers. In particular, we tried to use efficient im-

plementations for sequential computation to achieve comparability of our results with other

optimized implementations. As BSP also has uses as a performance model, methods of

performance prediction were investigated and their accuracy studied.

6.1 Result Summary

Experiments were conducted on three different parallel machines: a shared memory system

and two PC clusters, one with an Ethernet, the other with a Myrinet interconnection network.

We compared the performance of different communication libraries: PUB, the Oxford BSP

Toolset, and a simple BSP library based on MPI. PUB and the Oxford BSP Toolset both

implement optimizations to improve communication performance.

The first set of experiments was concerned with measuring the communication and com-

putation performance separately to obtain parameters for describing the parallel machines
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using the BSP model, particularly focusing on comparing parameters that describe the per-

formance of the communication network. Communication benchmarks showed that there

can be a large difference in performance between different libraries. On the message pass-

ing systems, there were advantages for the optimized libraries. The Oxford BSP Toolset

achieved particularly good performance on both Ethernet and Myrinet. PUB only showed

good performance on the Ethernet system. On Myrinet, having a higher communication cost

increased the per-message overhead when using PUB, hence only sub-optimal performance

and predictability could be obtained. MPI was not able to deliver comparable performance

either to PUB or the Oxford BSP Toolset on the Ethernet system. On Myrinet, MPI outper-

formed PUB for large communication costs, but could not achieve the same communication

performance as the Oxford BSP Toolset. On the shared memory machine, the optimized

BSP libraries could only achieve better performance than MPI for small messages using mes-

sage passing or remote memory put primitives. In contrast, the remote memory read access

using the MPI-2 DRMA functionality achieved the best communication performance on this

system.

Further experiments were carried out using memory-efficient parallel matrix multiplication.

The results from these experiments showed that even simple BSP algorithm implementations

can achieve similar or better speedup compared to PBLAS, an optimized standard library. The

only exception was the Ethernet system, on which comparable performance to PBLAS could

only be obtained for small numbers of processors, as our memory efficient algorithm uses a

communication pattern that is not efficient on this system. However, our implementation

was able to outperform PBLAS on Myrinet using the Oxford BSP Toolset, and on shared

memory using MPI-2. The performance could be predicted with reasonable accuracy by

using extensions to the BSP model that describe overhead for small messages and per-

message overhead. However, as this algorithm’s communication cost increases quadratically

with the problem size, the performance model showed particular sensitivity to errors in the

communication time estimation. This complicates accurate prediction, especially when using

a parallel machine with varying traffic on a communication network that is shared among

many users.

Our second practical benchmark used a parallel dynamic programming algorithm that
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computes the length of the longest common subsequence of two strings. This algorithm has

linear communication cost and quadratic computation cost. Performance predictability was

very good. However, when using an efficient sequential implementation, good speedup could

only be obtained for very large problem sizes. The PUB implementation of this algorithm

showed very good performance, as the communication cost is small and PUB has advantages

when each superstep consists of a small number of messages.

Table 6.1 shows a summary of all results. The number of bullets specifies the performance

that was achieved by each library, ranging from • (lowest performance compared to the other

libraries) to ••• (best performance). If the results were close, both the best/worst libraries

were awarded •••/•.

Table 6.1: Experimental result summary

Experiments Oxtool PUB MPI

Shared memory (skua)

Communication gap (put/get) •• • •••

Communication gap (send) ••• •• •

Latency ••• • •

Matrix multiplication •• • •••

LLCS (standard) ••• • ••

LLCS (bit-parallel) •• ••• •

Distributed memory, Ethernet (argus)

Communication gap (put/get) ••• ••• •

Communication gap (send) •• ••• •

Latency ••• •• •

Matrix multiplication ••• •• •

LLCS (standard) ••• •• •

LLCS (bit-parallel) ••• •• •

Distributed memory, Myrinet (aracari)

Communication gap (put/get) ••• • ••

Continued on the next page...
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...continued from last page.

Experiments Oxtool PUB MPI

Communication gap (send) ••• • ••

Latency •• ••• •

Matrix multiplication ••• • ••

LLCS (standard) ••• •• •

LLCS (bit-parallel) •• ••◦1 •

6.2 Outlook

The communication structure of BSP-like algorithms bears potential for optimizing perfor-

mance at library level. The experiments on state of the art systems showed that optimized

BSP libraries can achieve better performance than a plain general-purpose communication

library, though this is not always the case. Both PUB and Oxtool have communication de-

vices for several different architectures, and compiling them on top of MPI usually does not

yield the best possible performance. On the other hand, our experiments have shown that

performance improvement is often possible, even when using MPI as a basis for a BSP library.

Hence, an optimized BSP framework using MPI or any other general purpose communication

library could achieve performance portability also to future parallel systems.

Furthermore, all our experiments were focused on homogeneous parallel computers that

use a fast communication network. However, there are also various projects that aim to merge

the BSP approach and the idea of Grid computing [25], or to run BSP-style algorithms on

heterogeneous parallel computers. A BSP based model for heterogeneous parallel comput-

ing is proposed in [53]; examples of BSP programming frameworks for the Grid or similar

parallel architectures are InteGrade [31], GridNestStep [54] and the PUB Web-computing

Library [11]. This involves a whole range of interesting new problems, such as efficient job

scheduling, fault-tolerance and above all, obtaining run-time efficiency on systems which

may have varying processor-to-processor communication speed, as well as different memory

1Best performance until drop at h = 2048 bytes.
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and processing capabilities. Having a simple, efficient and portable framework for BSP pro-

gramming on heterogeneous computers would enable BSP algorithms to make use of the

great computational power that is available in the Grid. On the other hand, Grid computing

is likely to benefit from implementations that have predictable performance, as this allows

more efficient job scheduling and usage of computational resources.

The programming model we used is based on the BSPlib standard. This can complicate

performance prediction, as put and get primitives may have different performance. Also,

different BSP libraries obviously have been optimized for different kinds of communication.

The Oxford BSP Toolset shows very good performance using put-like communication, PUB

shows better performance when using send/move. This problem could presumably be avoided

by using a more abstract programming model similar to CGMlib’s h-relation [69] or SSCRAP’s

bulk communication functionality [24]. Furthermore, having a more abstract programming

model would facilitate portable library-level optimization. Another possibility is to combine

the idea of algorithmic skeletons and BSP (see e.g. [66, 65]).

A promising field is BSP algorithm engineering, as BSP algorithm implementations have

great potential to provide equal or better performance compared to standard approaches.

Another advantage of BSP is the predictability of the running time. This predictability can

be used to determine thresholds for using different algorithm implementations which might

have better performance for different input sizes, depending on the relative efficiency of the

individual processors and the communication network. Therefore, the next step in enabling

the scientific computing community to use BSP is to provide efficient BSP-based algorithmic

components. There are different projects that implement parallel graph algorithms [13, 33]

or algorithms in numerical linear algebra [42] using BSP-style communication. Other areas

of interest are computational biology, parallel string processing, and parallel combinatorial

optimization.

Overall, the BSP model has established itself as an accurate theoretical model for parallel

computation, as well as a good basis for practical parallel programming. However, more work

has to be done in making BSP-based tools and algorithms available for scientific computing,

and also in adapting these to changing paradigms in parallel computing. The scientific

computing community in particular can benefit from these developments, since optimized
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BSP algorithms can already achieve speedup for small problem sizes. Making standard

algorithm and communication libraries efficient and portable to modern parallel systems

significantly contributes to a wider acceptance of BSP.
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Appendix A

The BSPWrapper Framework

A.1 Extended Communication Library Interface

Files:

include/BSPWrapper.h,

BSPWrapper/generic/*,

include/memory.h,

include/paramfile.h,

include/BSPUtils.h,

include/avector.h, include/error.h,

include/multiqueue.h

Unbuffered BSMP

In the MPI implementation, BSPlib-standard functions have been supplemented by the fol-

lowing unbuffered messaging functions that help to conserve memory. Their basic behavior

is the same as of the Send and Move functions, but they do not buffer any data. Hence, the

data passed to HpSend must not be changed until the end of the superstep. Data pointers

obtained by HpMove are only valid in the superstep in which HpMove is called.

/∗ BSMP p r i m i t i v e s ∗/
void HpSend (int pid , void∗ tag , void∗ message , int count ) ;
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void HpMove ( void ∗& data , int & size ) ;

Other Functions

/∗ He l p e r s ∗/
double Time ( ) ;
void Print ( int pid , const char ∗ format , . . . ) ;

Time() returns the time that has passed since starting the program in seconds. Print()

is a wrapper for doing a printf only on node pid. If pid < 0, the printf command is

executed on every node.

Utility Classes

class CAVector < t >

The BSPWrapper utility library further contains the class CAVector, a basic C++ templated

vector class with a public data pointer that can be passed to BSPWrapper’s communication

primitives.

Construction and destruction:

The vector can be created empty, from an existing buffer (which will not be deleted upon

destruction) or with a specified size. The variable grow/ g specifies the alignment when the

buffer grows. The size of the vector will always be a multiple of this value.

CAVector ( ) ;
CAVector( int cnt , _t∗ buffer ) ;
CAVector( int _size , int _g= 1 ) ;

˜CAVector ( ) ;

Element access:

The individual data elements are accessible via the overloaded operator[]. The functions

Put and Get allow safe access to a sequence of elements. If Put has to write an array of
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elements which exceeds the length of the vector, then the vector will be resized. Get returns

the number of elements which were successfully read.

_t& operator [ ] ( int index ) ;

void Put ( const _t∗ _data , int index , int len ) ;
int Get ( int index , _t∗ _data , int len ) ;

Modifying the size:

SetSize is used to change the size and alignment of the vector. Shrink reduces the vector’s

length to newcount if it is longer. Both functions preserve the contents of the vector up to

the new length.

void SetSize (int _size , int _grow= 1 ) ;
void Shrink (int newcount ) ;

class CMultiQueue < t >

Based on CAVector, a simple message buffer class, CMultiQueue was created. It manages

a set of queues, which can be retrieved as an array and a set of counts and displacements

suitable for being transferred by a call to MPI Alltoallv.

Construction and destruction:

A CMultiQueue can be constructed as an empty message buffer (qcount specifies the

number of destinations, qbmin and qbgrow are the initial sizes and alignments of each

buffer.

Alternatively, it can be constructed from an array and counts/displacements as obtained

after a call to MPI Alltoallv. None of the buffers which are passed to it will be deleted on

destruction.

CMultiQueue (int qcount= 0 , int _qbmin= 0 , int _qbgrow= 1 ) ;
CMultiQueue (int qcount , void∗ array , int counts [ ] , int displs [ ] ) ;
˜CMultiQueue ( ) ;
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Changing the size:

As above, qcount specifies the number of destinations, qbmin and qbgrow are the initial

sizes and alignments of each buffer. Reset empties queues and resets them to their initial

size.

void SetSize (int qcount , int _qbmin= 0 , int _qbgrow= 1 ) ;
void Reset ( ) ;

Queue access:

Enqueue is used to add an array of data to a specific queue. Head retrieves a pointer to the

first element and the remaining length of a specific queue. DeleteHead removes a number

of elements from a specific queue. FirstHead and DeleteFirstHead work in a similar way

on the first queue that contains data.

void Enqueue (int qnr , _t∗ data , int count ) ;
void Head ( int qnr , _t∗& data , int &count ) ;
void DeleteHead( int qnr , int _count ) ;
void FirstHead(_t∗& data , int &count ) ;
void DeleteFirstHead( int count ) ;

Array conversion:

The functions ToArray and FromArray are used to convert the queue from or into an array

of chars and a set of (char) displacements and counts.

void ToArray ( char∗& array , int ∗& charcounts , int ∗& chardispls) ;
void FromArray( int qcount , void∗ array , int counts [ ] , int displs [ ] ) ;

A.2 Benchmarking Library

Files: include/BSPBenchmark.h, BSPWrapper/bench/*

A set of benchmarking functions are contained in the namespace BSPBenchmark.
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Measuring f

The speed of a single processor can be measured with the following four functions, which

return the time per flop f in seconds as a double precision float. This time can be esti-

mated for a dot product or a dense matrix-matrix multiplication, both for integers and for

double precision floats. If bench f.cpp is compiled with -D USE BLAS, the BLAS primitives

ddot/dgemm will be used by measure * double. The matrix multiplication and dot product

code was adapted from the original bspprobe from the Oxford BSP Toolset [76].

/∗
∗ f u n c t i o n s f o r measur ing the i n v e r s e f l o p r a t e ( f )
∗ f o r d i f f e r e n t t y p e s o f l o c a l computat ion .
∗
∗ the v a l u e o f f w i l l be r e t u r n e d i n seconds
∗
∗ ∗/

double measure_f_dot_int ( ) ;
double measure_f_matmul_int ( ) ;
double measure_f_dot_double ( ) ;
double measure_f_matmul_double ( ) ;

Measuring g

The bandwidth can be sampled for each communication primitive and for two different

kinds of communication. For the random permutation measurements to work correctly, each

processor must have the same starting random seed using srand before the call.

The functions return an estimation for g, which is the average for the samples where

g < 2gmin. A more precise estimation can be obtained when using the output data (a file

named bspprobe <arch> p<P> <fn> [random|alltoall].dat is created by the function)

and the BSPParam Perl module (see Appendix B.1).

/∗
∗ f u n c t i o n s f o r measur ing the bandwidth ( g )
∗ f o r d i f f e r e n t t y p e s o f communicat ion .
∗
∗ ∗/

double measure_g_alltoall( int size , int h , int fn , double fac ,
int sub , bool diag= false ) ;

double measure_g_random( int size , int h , int fn , double fac ,
int sub , bool diag= false ) ;
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/∗ Func t i on s and names f o r measure g x ∗/
#define HR FUNCTIONS 5
#define HR FN GET 0
#define HR FN SEND 1
#define HR FN PUT 2
#define HR FN HPPUT 3
#define HR FN HPGET 4
extern const char ∗ fnames [ ] ;

Measuring l

The latency can be measured with three kinds of communication preceeding the synchro-

nization:

• No communication. A plain call to the communication library Sync function.

• Cyclic shift communication. A cyclic shift (each processor p sends data to processor

(p + 1) mod P ) will be carried out before the synchronization, using HpPut.

• All-to-all communication. Each processor p sends data to every other processor using

HpPut before the synchronization.

All the functions use oversampling, measure l nocomm, measure l localshift have

been adapted from the original bspprobe from the Oxford BSP Toolset [76].

/∗
∗ f u n c t i o n s f o r measur ing the l a t e n c y ( l )
∗ f o r d i f f e r e n t t y p e s o f communicat ion .
∗
∗ the v a l u e o f l w i l l be r e t u r n e d i n seconds
∗
∗ ∗/

double measure_l_nocomm ( ) ;
double measure_l_localshift ( ) ;
double measure_l_alltoall ( ) ;
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Appendix B

BSPWrapper Tools Documentation

B.1 BSPParam - Bandwidth Modeling

The perl module BSPParam contains functionality to extract the BSP/LogP bandwidth

modelling parameters from a data file that contains raw bandwidth values as measured by

BSPWrapper’s bspprobe.

The input file has a column format like

512 512 0.001

512 256 0.0005

512 128 0.00025

512 64 0.000125

...

The first column contains the message size h∗, the second column the number of messages

with this size c = h/h∗ that were transmitted. The third column must contain the bandwidth

gap g or inverse bandwidth measured for this size (i.e. g = Tsampled/(h∗ ·c)). The following

parameters are computed:

Name in Perl script Variable Meaning

g inf g∞ Asymptotic value of g

h half hhalf Estimated value of hhalf
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overhead o Per-message overhead

error bsp εBSP Squared error using enhanced

BSP model with hhalf

error bspstar εBSP∗ Squared error using enhanced

BSP model with hhalf and o

B.2 Parsing BSPWrapper/bspprobe Results

parse bspprobe data.pl

The perl script will

• Create a performance report using LaTeX.

• Extract BSP and bandwidth modeling parameters for every communication primitive

on every system

• Create performance comparison and individual communication profile plots for each

communication primitive using gnuplot

Command line parameters

-cplots Enable comparison plots (off by default)

-pplots Enable individual primitive plots (off by default)

Input data

The script will read its input data from the current directory. Subdirectories must contain

the bspprobe output (possibly from different machines). A file template.gp must exist, this

will be used for setting up gnuplot [78]. Another file benchex.tex must exist, it will be

used as a wrapper for the auto-generated performance report. Samples are included in the

BSPWrapper/Tools distribution.
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Appendix C

Communication Benchmark Results

C.1 Results on Shared Memory (skua)

Table C.1: Computation speed on skua

Time per Op f ‘Flops’ 1/f

Value of f for OXTOOL

Dot product (double) 0.0034 µs 289.9 M

Matrix product (double) 0.0002 µs 5347.6 M

Average (double) 0.0004 µs 2818.7 M

Dot product (int) 0.0021 µs 478.5 M

Matrix product (int) 0.0009 µs 1081.1 M

Average (int) 0.0013 µs 779.8 M

Value of f for MPISHMEM

Dot product (double) 0.0034 µs 289.9 M

Matrix product (double) 0.0002 µs 5347.6 M

Average (double) 0.0004 µs 2818.7 M

Dot product (int) 0.0020 µs 502.5 M

Matrix product (int) 0.0009 µs 1082.3 M

Average (int) 0.0013 µs 792.4 M

Value of f for PUB

Dot product (double) 0.0036 µs 279.3 M

Matrix product (double) 0.0002 µs 5405.4 M

Average (double) 0.0004 µs 2842.4 M

Dot product (int) 0.0057 µs 176.1 M

Matrix product (int) 0.0030 µs 337.8 M

Average (int) 0.0039 µs 256.9 M
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Table C.2: Latency on skua

p no communication cyclic shift all-to-all

Value of l for OXTOOL

4 11.20 µs 16.90 µs 25.20 µs

8 27.50 µs 33.90 µs 64.10 µs

10 35.60 µs 41.40 µs 81.10 µs

16 62.20 µs 69.70 µs 145.50 µs

25 105.50 µs 110.30 µs 248.50 µs

32 128.80 µs 136.30 µs 327.00 µs

Value of l for MPISHMEM

4 34.40 µs 49.30 µs 44.40 µs

8 43.30 µs 70.50 µs 99.30 µs

10 66.00 µs 94.20 µs 133.60 µs

16 88.50 µs 119.30 µs 207.70 µs

25 163.00 µs 206.80 µs 363.60 µs

32 246.60 µs 273.00 µs 584.20 µs

Value of l for PUB

4 32.90 µs 48.52 µs 82.80 µs

10 61.20 µs 81.80 µs 244.88 µs

16 80.20 µs 100.61 µs 482.30 µs

25 99.90 µs 127.20 µs 984.31 µs

32 97.61 µs 141.38 µs 1459.41 µs

Table C.3: Bandwidth gap on skua

p Fn g∞ hhalf o εBSP∗ εBSP

Random Permutation

Using OXTOOL

4 Get 0.04173 µs 354 185 6.4e-10 8.3e-10

4 HpGet 0.02234 µs 594 358 7.7e-10 7.9e-10

4 HpPut 0.02481 µs 544 3 2.2e-11 2.4e-11

4 Put 0.02666 µs 497 8 2.7e-11 3.5e-11

4 Send 0.04418 µs 320 69 1.3e-11 4.2e-10

8 Get 0.04942 µs 615 199 8.1e-10 1.5e-09

8 HpGet 0.02621 µs 1155 365 8.1e-10 1.4e-09

8 HpPut 0.03162 µs 969 4 1.1e-10 1.2e-10

Continued on the next page...
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...continued from last page.

p Fn g∞ hhalf o εBSP∗ εBSP

8 Put 0.03477 µs 849 7 1.1e-10 1.2e-10

8 Send 0.06524 µs 468 63 3.0e-11 8.3e-10

10 Get 0.04320 µs 891 228 7.9e-10 1.5e-09

10 HpGet 0.02675 µs 1430 361 7.9e-10 1.4e-09

10 HpPut 0.03235 µs 1113 4 1.8e-10 1.9e-10

10 Put 0.03551 µs 1006 7 1.6e-10 1.8e-10

10 Send 0.05432 µs 687 77 5.2e-11 9.3e-10

16 Get 0.04251 µs 1485 243 7.1e-10 2.1e-09

16 HpGet 0.02746 µs 2293 366 7.1e-10 2.0e-09

16 HpPut 0.03346 µs 1890 131 1.9e-10 1.3e-09

16 Put 0.03665 µs 1687 122 2.2e-10 1.4e-09

16 Send 0.05773 µs 1091 80 2.0e-10 1.4e-09

25 Get 0.04540 µs 2266 233 8.4e-10 2.7e-09

25 HpGet 0.02769 µs 3576 373 1.6e-09 3.5e-09

25 HpPut 0.03419 µs 2858 137 6.2e-10 2.1e-09

25 Put 0.03766 µs 2639 126 5.3e-10 2.0e-09

25 Send 0.09835 µs 1016 50 5.4e-10 2.1e-09

32 Get 0.05358 µs 2515 205 1.1e-09 4.0e-09

32 HpGet 0.02993 µs 4489 363 1.1e-09 4.0e-09

32 HpPut 0.03729 µs 3587 142 1.2e-09 3.3e-09

32 Put 0.03892 µs 3290 131 7.2e-09 9.4e-09

32 Send 0.09180 µs 1409 58 1.1e-09 3.3e-09

Using MPISHMEM

4 Get 0.01483 µs 2185 28 9.4e-11 1.2e-10

4 HpGet 0.01199 µs 2675 14 9.8e-11 1.1e-10

4 HpPut 0.01090 µs 2958 16 1.0e-10 1.1e-10

4 Put 0.01499 µs 2196 52 8.7e-11 1.5e-10

4 Send 0.06365 µs 500 298 7.7e-09 3.1e-09

8 Get 0.02198 µs 2249 21 2.5e-10 3.0e-10

8 HpGet 0.01479 µs 3367 14 1.9e-10 2.1e-10

8 HpPut 0.01348 µs 3500 18 2.7e-10 2.9e-10

8 Put 0.02118 µs 2502 46 1.8e-10 2.9e-10

8 Send 0.62080 µs 119 7 4.0e-10 8.8e-10

10 Get 0.02423 µs 2880 21 4.5e-10 5.2e-10

10 HpGet 0.01508 µs 4543 17 4.8e-10 5.1e-10

10 HpPut 0.01420 µs 4861 21 4.7e-10 5.1e-10

10 Put 0.02261 µs 3156 45 4.2e-10 5.7e-10

10 Send 0.79223 µs 132 6 7.0e-10 1.3e-09

16 Get 0.01893 µs 4973 30 8.8e-10 9.9e-10

Continued on the next page...
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...continued from last page.

p Fn g∞ hhalf o εBSP∗ εBSP

16 HpGet 0.01729 µs 5456 18 9.2e-10 9.8e-10

16 HpPut 0.01516 µs 6474 23 8.3e-10 8.9e-10

16 Put 0.02366 µs 4068 46 8.7e-10 1.1e-09

16 Send 1.20087 µs 128 4 1.6e-09 2.4e-09

25 Get 0.02227 µs 7164 31 2.7e-09 2.9e-09

25 HpGet 0.01633 µs 9792 27 2.7e-09 2.9e-09

25 HpPut 0.01521 µs 11034 33 2.2e-09 2.3e-09

25 Put 0.02343 µs 7031 52 2.4e-09 2.8e-09

25 Send 2.08949 µs 128 3 5.6e-09 7.6e-09

32 Get 0.02316 µs 10055 36 5.3e-09 5.6e-09

32 HpGet 0.01709 µs 13588 35 5.6e-09 5.9e-09

32 HpPut 0.01821 µs 12904 35 5.4e-09 5.7e-09

32 Put 0.02433 µs 9762 57 5.0e-09 5.6e-09

32 Send 0.07003 µs 3304 322 9.5e-09 9.4e-09

Using PUB

4 Get 0.06713 µs 856 480 2.8e-08 7.8e-09

4 HpGet 0.06669 µs 912 1773 3.8e-07 1.1e-07

4 HpPut 0.06585 µs 855 18 2.3e-10 3.7e-10

4 Put 0.07428 µs 756 15 2.4e-10 3.6e-10

4 Send 0.07395 µs 774 23 2.1e-10 4.2e-10

10 Get 0.05103 µs 1532 129 2.0e-10 1.7e-09

10 HpGet 0.04533 µs 1919 401 3.0e-09 5.2e-09

10 HpPut 0.03677 µs 2057 35 4.3e-10 6.4e-10

10 Put 0.04421 µs 1695 27 4.7e-10 6.7e-10

10 Send 0.04585 µs 1671 37 4.2e-10 7.3e-10

16 Get 0.04786 µs 2517 141 6.7e-10 2.8e-09

16 HpGet 0.04632 µs 2705 423 3.6e-09 6.4e-09

16 HpPut 0.04569 µs 2665 32 1.2e-09 1.5e-09

16 Put 0.05414 µs 2256 24 1.2e-09 1.5e-09

16 Send 0.05272 µs 2294 38 1.2e-09 1.6e-09

25 Get 0.04734 µs 11942 155 2.3e-07 2.2e-07

25 Put 0.05289 µs 2883 26 2.1e-09 2.5e-09

25 Send 0.05213 µs 2949 40 1.9e-09 2.6e-09

32 Get 0.04551 µs 3569 161 1.4e-09 4.1e-09

32 HpGet 0.04274 µs 4065 538 6.2e-09 8.8e-09

32 HpPut 0.04223 µs 3829 38 2.3e-09 2.8e-09

32 Put 0.04866 µs 3324 29 2.4e-09 2.8e-09

32 Send 0.04833 µs 3367 44 2.2e-09 2.9e-09

All to all

Continued on the next page...
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...continued from last page.

p Fn g∞ hhalf o εBSP∗ εBSP

Using OXTOOL

4 Get 0.04521 µs 177 130 1.3e-10 7.0e-10

4 HpGet 0.02613 µs 292 208 1.1e-10 5.9e-10

4 HpPut 0.02472 µs 284 4 1.1e-11 1.3e-11

4 Put 0.03742 µs 199 4 9.2e-12 1.3e-11

4 Send 0.05137 µs 150 72 1.5e-11 4.8e-10

8 Get 0.04922 µs 173 114 7.1e-11 7.3e-10

8 HpGet 0.02566 µs 313 209 6.4e-11 6.6e-10

8 HpPut 0.02801 µs 276 5 1.3e-11 1.6e-11

8 Put 0.03747 µs 207 4 1.3e-11 1.6e-11

8 Send 0.04912 µs 169 83 2.3e-11 5.7e-10

10 Get 0.03963 µs 214 137 5.2e-11 6.8e-10

10 HpGet 0.02331 µs 346 220 4.7e-11 6.1e-10

10 HpPut 0.02725 µs 287 5 1.2e-11 1.6e-11

10 Put 0.03585 µs 215 4 1.3e-11 1.7e-11

10 Send 0.04935 µs 173 87 2.3e-11 5.5e-10

16 Get 0.04015 µs 225 144 5.6e-11 7.9e-10

16 HpGet 0.02610 µs 344 210 5.2e-11 7.1e-10

16 HpPut 0.02960 µs 297 150 2.3e-11 6.0e-10

16 Put 0.03747 µs 234 121 2.4e-11 6.2e-10

16 Send 0.05106 µs 174 93 2.8e-11 6.7e-10

25 Get 0.27693 µs 34 21 6.4e-10 1.4e-09

25 HpGet 0.02856 µs 322 244 2.8e-10 1.1e-09

25 HpPut 0.04291 µs 213 114 6.0e-10 1.4e-09

25 Put 0.04108 µs 227 124 3.1e-11 7.2e-10

25 Send 0.05204 µs 185 103 3.7e-11 7.8e-10

32 Get 0.07925 µs 129 81 6.3e-11 8.9e-10

32 HpGet 0.03263 µs 312 187 5.1e-11 8.5e-10

32 HpPut 0.03973 µs 249 135 3.4e-11 7.6e-10

32 Put 0.04770 µs 333 109 4.7e-09 5.8e-09

32 Send 0.06374 µs 158 87 4.9e-11 8.2e-10

Using MPISHMEM

4 Get 0.00350 µs 3336 154 5.5e-12 2.1e-11

4 HpGet 0.00274 µs 3869 67 9.6e-12 1.4e-11

4 HpPut 0.01199 µs 918 15 1.3e-11 1.8e-11

4 Put 0.01989 µs 598 46 7.8e-12 5.0e-11

4 Send 0.12475 µs 98 55 5.2e-10 6.6e-10

8 Get 0.00258 µs 2740 188 3.0e-12 1.5e-11

8 HpGet 0.00161 µs 4371 116 3.5e-12 6.2e-12

Continued on the next page...
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...continued from last page.

p Fn g∞ hhalf o εBSP∗ εBSP

8 HpPut 0.01256 µs 618 15 7.0e-12 1.1e-11

8 Put 0.02035 µs 420 44 2.8e-12 3.7e-11

8 Send 0.21597 µs 68 38 8.3e-10 6.6e-10

10 Get 0.00246 µs 3310 202 2.7e-12 1.3e-11

10 HpGet 0.00153 µs 5170 140 3.8e-12 6.9e-12

10 HpPut 0.01375 µs 628 15 8.0e-12 1.2e-11

10 Put 0.02190 µs 427 42 3.8e-12 3.8e-11

10 Send 0.22082 µs 69 34 6.3e-10 5.5e-10

16 Get 0.00193 µs 3483 247 1.6e-12 1.1e-11

16 HpGet 0.00131 µs 4901 147 2.9e-12 5.5e-12

16 HpPut 0.01383 µs 535 14 9.7e-12 1.4e-11

16 Put 0.02158 µs 387 43 5.4e-12 4.1e-11

16 Send 0.28425 µs 46 42 2.1e-09 1.2e-09

25 Get 0.00192 µs 3644 251 2.2e-12 1.2e-11

25 HpGet 0.00122 µs 5700 174 3.2e-12 5.8e-12

25 HpPut 0.01405 µs 538 14 7.0e-12 1.1e-11

25 Put 0.02196 µs 263 43 3.1e-11 8.3e-11

25 Send 0.34002 µs 48 48 4.0e-09 2.1e-09

32 Get 0.00164 µs 4733 303 2.5e-12 1.2e-11

32 HpGet 0.00130 µs 5954 176 3.8e-12 6.9e-12

32 HpPut 0.01592 µs 539 14 7.7e-12 1.2e-11

32 Put 0.02287 µs 402 42 3.7e-12 3.8e-11

32 Send 0.83983 µs 10 3 3.7e-09 3.7e-09

Using PUB

4 Get 0.15332 µs 137 623 2.3e-07 6.5e-08

4 HpGet 0.14587 µs 373 1683 8.8e-07 6.8e-07

4 HpPut 0.15182 µs 132 10 5.7e-11 1.5e-10

4 Put 0.15921 µs 128 9 3.3e-11 1.1e-10

4 Send 0.15897 µs 136 14 3.2e-11 1.7e-10

10 Get 0.08557 µs 172 252 5.8e-09 4.0e-09

10 HpGet 0.14331 µs 164 528 8.8e-08 4.5e-08

10 HpPut 0.04409 µs 242 30 2.9e-12 6.7e-11

10 Put 0.04464 µs 238 28 3.1e-12 6.0e-11

10 Send 0.04656 µs 258 38 8.7e-13 9.6e-11

16 Get 0.17902 µs 85 191 1.8e-08 9.6e-09

16 HpGet 0.17537 µs 119 828 3.9e-07 1.5e-07

16 HpPut 0.13499 µs 84 10 6.2e-12 6.2e-11

16 Put 0.13069 µs 85 10 7.5e-12 5.8e-11

16 Send 0.14456 µs 86 14 8.6e-12 1.0e-10

Continued on the next page...
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...continued from last page.

p Fn g∞ hhalf o εBSP∗ εBSP

25 Get 0.24453 µs 56 178 3.1e-08 1.4e-08

25 Put 0.19776 µs 49 6 1.3e-11 4.3e-11

25 Send 0.20955 µs 50 9 1.8e-11 8.5e-11

32 Get 0.30795 µs 40 159 3.7e-08 1.8e-08

32 HpGet 0.30443 µs 64 647 6.5e-07 2.8e-07

32 HpPut 0.23150 µs 37 5 1.5e-11 4.7e-11

32 Put 0.23288 µs 37 5 1.7e-11 4.5e-11

32 Send 0.23564 µs 42 8 2.0e-11 7.9e-11
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C.2 Results on Distributed Memory, Ethernet (argus)

Table C.4: Computation speed on argus

Time per Op f ‘Flops’ 1/f

Value of f for OXTOOL

Dot product (double) 0.0104 µs 96.2 M

Matrix product (double) 0.0027 µs 371.7 M

Average (double) 0.0043 µs 234.0 M

Dot product (int) 0.0056 µs 179.5 M

Matrix product (int) 0.0012 µs 806.5 M

Average (int) 0.0020 µs 493.0 M

Value of f for PUB

Dot product (double) 0.0094 µs 106.4 M

Matrix product (double) 0.0004 µs 2298.9 M

Average (double) 0.0008 µs 1202.6 M

Dot product (int) 0.0055 µs 181.5 M

Matrix product (int) 0.0012 µs 813.0 M

Average (int) 0.0020 µs 497.2 M

Value of f for MPIMPASS

Dot product (double) 0.1880 µs 5.3 M

Matrix product (double) 0.0005 µs 2049.2 M

Average (double) 0.0010 µs 1027.2 M

Dot product (int) 0.0057 µs 175.4 M

Matrix product (int) 0.0012 µs 806.5 M

Average (int) 0.0020 µs 490.9 M

Table C.5: Latency on argus

p no communication cyclic shift all-to-all

Value of l for OXTOOL

4 808.00 µs 1599.20 µs 1568.90 µs

10 614.00 µs 1047.40 µs 1565.90 µs

Value of l for PUB

4 983.00 µs 4033.70 µs 1372.80 µs

10 2027.40 µs 5600.20 µs 3035.20 µs

Value of l for MPIMPASS

4 7854.40 µs 7294.20 µs 8100.20 µs

10 18754.60 µs 18197.30 µs 19270.00 µs
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Table C.6: Bandwidth gap on argus

p Fn g∞ hhalf o εBSP∗ εBSP

Random Permutation

Using OXTOOL

4 Get 1.78528 µs 576 320 5.6e-06 1.7e-05

4 HpGet 3.63672 µs 255 214 7.5e-06 2.2e-05

4 HpPut 3.48879 µs 288 1 1.4e-07 1.5e-07

4 Put 3.58051 µs 280 2 1.8e-07 1.9e-07

4 Send 3.17405 µs 266 173 6.2e-06 1.9e-05

10 Get 6.32309 µs 205 240 2.2e-04 4.2e-04

10 HpGet 6.36348 µs 207 223 1.7e-04 3.5e-04

10 HpPut 6.09979 µs 166 1 1.8e-07 1.9e-07

10 Put 5.35441 µs 157 1 1.8e-07 1.9e-07

10 Send 6.79959 µs 196 183 1.9e-04 3.5e-04

Using PUB

4 Get 2.44785 µs 443 286 5.7e-06 1.5e-05

4 HpGet 2.96265 µs 343 444 1.3e-05 6.2e-05

4 Put 1.21292 µs 850 20 7.3e-08 1.1e-07

4 Send 2.63778 µs 325 23 7.3e-08 2.8e-07

10 Get 5.78395 µs 469 202 7.9e-05 1.9e-04

10 HpGet 6.33894 µs 961 323 2.4e-04 5.7e-04

10 HpPut 6.30675 µs 588 5 1.9e-06 1.8e-06

10 Put 5.53043 µs 607 7 2.3e-06 2.3e-06

10 Send 6.02710 µs 397 16 9.1e-07 1.2e-06

Using MPIMPASS

4 Get 2.74347 µs 1950 249 4.3e-06 2.3e-05

4 HpGet 3.24968 µs 1831 218 4.0e-06 1.9e-05

4 HpPut 4.18889 µs 1398 171 4.4e-06 2.0e-05

4 Put 1.27564 µs 4336 462 3.1e-06 2.1e-05

4 Send 3.57495 µs 1613 9 3.0e-06 3.3e-06

10 Get 6.30124 µs 2531 286 3.3e-05 1.6e-04

10 HpGet 7.11564 µs 2280 235 5.0e-05 1.7e-04

10 HpPut 7.92463 µs 4101 213 4.2e-04 3.4e-04

10 Put 9.15032 µs 1743 178 8.8e-06 1.0e-04

10 Send 7.99085 µs 1982 11 2.5e-05 2.7e-05

All to all

Using OXTOOL

4 Get 1.53880 µs 272 387 3.4e-06 5.9e-06

4 HpGet 4.39223 µs 90 200 9.5e-06 9.7e-06

Continued on the next page...
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...continued from last page.

p Fn g∞ hhalf o εBSP∗ εBSP

4 HpPut 4.83696 µs 90 1 1.9e-08 2.0e-08

4 Put 4.56499 µs 93 1 2.2e-08 2.4e-08

10 Get 2.10858 µs 70 514 1.5e-05 1.2e-05

10 HpGet 6.09863 µs 22 179 1.5e-05 1.2e-05

10 HpPut 5.98969 µs 22 -0 2.0e-08 2.0e-08

10 Put 6.61703 µs 18 -0 7.2e-09 7.2e-09

10 Send 5.98250 µs 25 179 1.4e-05 1.1e-05

Using PUB

4 HpGet 5.25472 µs 68 203 8.2e-06 4.4e-05

4 HpPut 3.73596 µs 84 6 1.6e-08 2.7e-08

4 Put 3.47809 µs 79 7 1.5e-08 2.9e-08

4 Send 3.56861 µs 79 14 1.0e-08 7.0e-08

10 Get 3.25443 µs 75 226 6.1e-06 5.2e-06

10 HpGet 7.14679 µs 32 230 2.3e-05 3.4e-05

10 HpPut 4.28575 µs 68 4 5.9e-09 1.0e-08

10 Put 4.17672 µs 66 4 5.5e-09 1.1e-08

10 Send 4.12093 µs 72 11 1.1e-08 3.3e-08

Using MPIMPASS

4 Get 1.66011 µs 1305 460 8.3e-06 1.3e-05

4 HpGet 5.75424 µs 331 131 9.6e-06 1.8e-05

4 HpPut 3.91307 µs 490 75 6.8e-07 1.8e-06

4 Put 3.65087 µs 522 121 2.1e-06 3.0e-06

4 Send 4.33270 µs 457 5 3.4e-07 4.0e-07

10 Get 3.33746 µs 552 310 1.2e-05 1.0e-05

10 HpGet 10.25375 µs 171 99 9.2e-06 1.1e-05

10 HpPut 4.91546 µs 352 46 2.3e-07 8.9e-07

10 Put 5.21218 µs 329 51 3.9e-07 1.1e-06

10 Send 4.88309 µs 375 7 2.4e-07 3.1e-07
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C.3 Results on Distributed Memory, Myrinet (aracari)

Table C.7: Computation speed on aracari

Time per Op f ‘Flops’ 1/f

Value of f for OXTOOL

Dot product (double) 0.0245 µs 40.8 M

Matrix product (double) 0.0016 µs 625.0 M

Average (double) 0.0030 µs 332.9 M

Dot product (int) 0.0118 µs 84.7 M

Matrix product (int) 0.0017 µs 591.7 M

Average (int) 0.0030 µs 338.2 M

Value of f for PUB

Dot product (double) 0.0251 µs 39.8 M

Matrix product (double) 0.0024 µs 413.2 M

Average (double) 0.0044 µs 226.5 M

Dot product (int) 0.0119 µs 84.0 M

Matrix product (int) 0.0022 µs 450.5 M

Average (int) 0.0037 µs 267.2 M

Value of f for MPIMPASS

Dot product (double) 0.0300 µs 33.3 M

Matrix product (double) 0.0017 µs 598.8 M

Average (double) 0.0032 µs 316.1 M

Dot product (int) 0.0121 µs 82.6 M

Matrix product (int) 0.0017 µs 602.4 M

Average (int) 0.0029 µs 342.5 M

Table C.8: Latency on aracari

p no communication cyclic shift all-to-all

Value of l for OXTOOL

4 43.40 µs 64.50 µs 87.50 µs

8 122.00 µs 146.80 µs 249.70 µs

10 164.20 µs 188.30 µs 331.70 µs

16 283.90 µs 309.50 µs 575.00 µs

32 607.70 µs 634.40 µs 1227.00 µs

Value of l for PUB

4 56.79 µs 75.60 µs 100.40 µs

8 102.62 µs 122.79 µs 237.08 µs
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p no communication cyclic shift all-to-all

10 102.31 µs 122.79 µs 278.90 µs

16 172.90 µs 189.71 µs 482.80 µs

32 360.49 µs 375.99 µs 986.91 µs

Value of l for MPIMPASS

4 333.10 µs 343.90 µs 384.80 µs

8 731.60 µs 798.10 µs 956.80 µs

10 1102.40 µs 1129.90 µs 1323.30 µs

16 1447.30 µs 1482.40 µs 1819.80 µs

32 2778.40 µs 2805.00 µs 3578.10 µs

Table C.9: Bandwidth gap on aracari

p Fn g∞ hhalf o εBSP∗ εBSP

Random Permutation

Using OXTOOL

4 Get 0.18552 µs 249 142 9.2e-09 8.5e-09

4 HpGet 0.12560 µs 353 217 1.1e-08 8.2e-09

4 HpPut 0.16114 µs 273 1 2.0e-10 2.1e-10

4 Put 0.14070 µs 327 3 2.2e-10 2.5e-10

4 Send 0.23052 µs 196 37 1.3e-10 2.9e-09

8 Get 0.25679 µs 477 153 1.1e-08 2.6e-08

8 HpGet 0.21733 µs 574 181 1.2e-08 2.5e-08

8 HpPut 0.24953 µs 488 2 1.4e-09 1.5e-09

8 Put 0.25384 µs 475 2 1.6e-09 1.7e-09

8 Send 0.30818 µs 404 61 1.6e-10 1.5e-08

10 Get 0.26088 µs 604 160 1.2e-08 3.0e-08

10 HpGet 0.24548 µs 655 170 1.2e-08 3.1e-08

10 HpPut 1.28570 µs 121 -0 7.9e-09 7.9e-09

10 Put 0.26453 µs 597 2 2.3e-09 2.5e-09

10 Send 0.34736 µs 495 60 3.5e-10 1.8e-08

16 Get 0.29210 µs 903 145 9.7e-09 3.7e-08

16 HpGet 0.27320 µs 1268 186 1.1e-05 1.1e-05

16 HpPut 0.83624 µs 314 31 3.4e-07 3.8e-07

16 Put 0.28516 µs 922 84 4.3e-08 7.4e-08

16 Send 0.35500 µs 735 65 3.1e-09 2.9e-08

32 Get 0.33669 µs 1675 137 5.6e-09 2.4e-08

32 HpGet 0.48880 µs 1155 171 5.4e-07 6.8e-07

32 HpPut 0.49472 µs 1141 379 4.0e-06 4.0e-06
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p Fn g∞ hhalf o εBSP∗ εBSP

32 Put 0.31482 µs 1779 70 6.4e-09 2.0e-08

32 Send 0.38172 µs 1474 59 5.9e-09 1.9e-08

Using PUB

4 Get 0.78523 µs 90 564 5.2e-06 1.7e-06

4 HpGet 0.29796 µs 255 3458 2.9e-05 8.1e-06

4 HpPut 0.23395 µs 289 640 5.9e-07 2.4e-07

4 Put 0.78058 µs 89 192 6.0e-07 2.4e-07

4 Send 0.77379 µs 99 771 9.5e-06 2.7e-06

8 Get 0.79534 µs 151 555 5.0e-06 1.7e-06

8 HpGet 0.30172 µs 463 3430 2.9e-05 8.2e-06

8 HpPut 0.27693 µs 404 541 5.6e-07 2.5e-07

8 Put 0.82844 µs 136 181 5.6e-07 2.5e-07

8 Send 0.78951 µs 156 765 9.5e-06 2.8e-06

10 Get 0.79287 µs 255 571 5.3e-06 1.8e-06

10 HpGet 0.31990 µs 441 3314 3.0e-05 8.6e-06

10 HpPut 0.29469 µs 410 520 5.8e-07 2.6e-07

10 Put 0.82601 µs 149 185 5.9e-07 2.6e-07

10 Send 0.82042 µs 164 738 9.5e-06 2.8e-06

16 Get 0.79853 µs 226 561 5.1e-06 1.8e-06

16 HpGet 0.32802 µs 596 3222 3.0e-05 8.5e-06

16 HpPut 0.31178 µs 555 490 5.7e-07 2.6e-07

16 Put 0.84594 µs 206 180 5.6e-07 2.5e-07

16 Send 0.83204 µs 223 730 9.5e-06 2.8e-06

32 Get 0.79423 µs 452 638 2.5e-06 6.8e-07

32 HpGet 0.33143 µs 1108 3590 1.5e-05 3.4e-06

32 HpPut 0.32392 µs 1092 531 2.6e-07 9.6e-08

32 Put 0.83117 µs 434 207 2.5e-07 1.1e-07

32 Send 0.84371 µs 444 810 4.7e-06 1.2e-06

Using MPIMPASS

4 Get 0.20144 µs 1473 208 2.1e-08 3.4e-08

4 HpGet 0.13358 µs 2180 342 2.7e-08 3.7e-08

4 HpPut 0.14582 µs 1879 461 7.8e-08 5.3e-08

4 Put 0.19498 µs 1436 441 1.4e-07 7.8e-08

4 Send 0.24374 µs 1123 83 7.9e-09 1.1e-08

8 Get 0.27458 µs 2460 192 3.4e-08 1.1e-07

8 HpGet 0.25416 µs 2644 223 3.7e-08 1.1e-07

8 HpPut 0.24379 µs 2795 329 8.6e-08 1.1e-07

8 Put 0.32503 µs 1922 319 1.5e-07 1.6e-07

8 Send 0.30741 µs 1993 77 2.6e-08 4.4e-08
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p Fn g∞ hhalf o εBSP∗ εBSP

10 Get 0.29266 µs 3300 185 6.7e-08 1.8e-07

10 HpGet 0.28895 µs 3347 190 6.1e-08 1.7e-07

10 HpPut 0.25664 µs 3615 300 7.8e-08 1.8e-07

10 Put 0.36752 µs 2564 273 1.3e-07 2.0e-07

10 Send 0.34293 µs 2690 67 6.6e-08 9.8e-08

16 Get 0.29195 µs 4370 190 1.4e-07 3.0e-07

16 HpGet 0.29416 µs 4333 210 1.1e-07 2.6e-07

16 HpPut 0.27372 µs 4468 319 1.2e-07 2.6e-07

16 Put 0.35576 µs 3455 327 1.9e-07 3.3e-07

16 Send 0.34771 µs 3607 79 1.1e-07 1.5e-07

32 Get 0.34198 µs 7327 207 1.6e-07 3.0e-07

32 HpGet 0.33610 µs 7457 216 1.6e-07 3.0e-07

32 HpPut 0.28305 µs 8694 311 1.4e-07 2.8e-07

32 Put 0.39751 µs 6189 304 1.4e-07 2.9e-07

32 Send 0.37784 µs 6442 72 2.0e-07 2.5e-07

All to all

Using OXTOOL

4 Get 0.29446 µs 87 87 4.6e-09 1.0e-08

4 HpGet 0.18398 µs 140 134 7.5e-09 1.5e-08

4 HpPut 0.17087 µs 145 1 5.8e-11 6.8e-11

4 Put 0.26765 µs 90 1 6.1e-11 7.0e-11

4 Send 0.35583 µs 73 42 4.0e-10 6.1e-09

8 Get 0.37209 µs 84 70 2.8e-09 1.2e-08

8 HpGet 0.27578 µs 114 91 2.5e-09 1.1e-08

8 HpPut 0.27490 µs 109 1 8.4e-11 9.5e-11

8 Put 0.37763 µs 79 0 9.0e-11 9.7e-11

8 Send 0.44444 µs 70 42 5.9e-10 8.8e-09

10 Get 0.36992 µs 87 67 2.0e-09 1.1e-08

10 HpGet 0.29085 µs 111 82 1.8e-09 1.1e-08

10 HpPut 0.27672 µs 110 1 1.1e-10 1.2e-10

10 Put 0.35963 µs 85 1 9.3e-11 1.0e-10

10 Send 0.46019 µs 70 42 6.2e-10 8.7e-09

16 Get 0.42269 µs 91 71 3.1e-09 1.6e-08

16 HpGet 0.36214 µs 92 71 2.2e-09 1.2e-08

16 HpPut 0.33082 µs 101 68 2.3e-09 1.3e-08

16 Put 0.42921 µs 78 48 8.0e-10 9.6e-09

16 Send 0.52310 µs 64 40 8.0e-10 9.8e-09

32 Get 0.33502 µs 108 80 1.3e-09 4.0e-09

32 HpGet 0.28111 µs 128 91 1.2e-09 3.7e-09
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p Fn g∞ hhalf o εBSP∗ εBSP

32 HpPut 0.27500 µs 132 79 6.4e-10 3.1e-09

32 Put 0.36643 µs 98 60 6.6e-10 3.2e-09

32 Send 0.48371 µs 75 47 7.6e-10 3.3e-09

Using PUB

4 Get 1.38399 µs 26 225 2.0e-06 8.6e-07

4 HpGet 0.68405 µs 73 1025 1.1e-05 3.8e-06

4 HpPut 0.60117 µs 53 182 2.5e-07 1.3e-07

4 Put 1.38077 µs 22 79 2.5e-07 1.3e-07

4 Send 1.35679 µs 34 305 3.6e-06 1.4e-06

8 Get 1.33408 µs 31 142 6.1e-07 3.2e-07

8 HpGet 0.74805 µs 81 561 3.2e-06 1.4e-06

8 HpPut 0.68551 µs 61 99 7.0e-08 5.0e-08

8 Put 1.34738 µs 24 50 7.0e-08 5.3e-08

8 Send 1.33974 µs 36 188 1.1e-06 5.2e-07

10 Get 1.18424 µs 35 121 2.9e-07 1.9e-07

10 HpGet 0.63618 µs 94 491 1.6e-06 7.8e-07

10 Put 1.22625 µs 25 43 3.6e-08 3.1e-08

10 Send 1.21961 µs 39 156 5.4e-07 3.0e-07

16 Get 1.33351 µs 33 104 2.7e-07 1.8e-07

16 HpGet 0.81662 µs 75 372 1.5e-06 7.5e-07

16 HpPut 0.77098 µs 39 66 3.0e-08 3.0e-08

16 Put 1.36141 µs 21 37 3.1e-08 2.9e-08

16 Send 1.36567 µs 36 135 5.0e-07 2.8e-07

32 Get 0.82118 µs 56 131 5.2e-08 3.5e-08

32 HpGet 0.40893 µs 157 567 2.8e-07 1.4e-07

32 HpPut 0.43581 µs 68 94 5.9e-09 6.2e-09

32 Put 0.82617 µs 37 49 5.9e-09 6.2e-09

32 Send 0.83142 µs 69 172 9.6e-08 5.8e-08

Using MPIMPASS

4 Get 0.22792 µs 604 162 7.5e-09 2.8e-08

4 HpGet 0.21700 µs 648 168 6.9e-09 2.7e-08

4 HpPut 0.21873 µs 486 195 1.4e-08 2.7e-08

4 Put 0.40907 µs 257 275 2.1e-07 1.2e-07

4 Send 0.37634 µs 247 27 1.1e-09 2.3e-09

8 Get 0.35052 µs 437 119 4.6e-09 3.8e-08

8 HpGet 0.33369 µs 442 128 5.1e-09 4.0e-08

8 HpPut 0.31761 µs 342 122 5.7e-09 2.8e-08

8 Put 0.46533 µs 235 281 2.5e-07 1.6e-07

8 Send 0.42466 µs 209 18 6.0e-10 1.9e-09
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p Fn g∞ hhalf o εBSP∗ εBSP

10 Get 0.40692 µs 398 105 4.2e-09 3.9e-08

10 HpGet 0.38795 µs 417 112 4.5e-09 4.0e-08

10 HpPut 0.34484 µs 357 107 3.4e-09 2.6e-08

10 Put 0.47916 µs 267 247 1.8e-07 1.3e-07

10 Send 0.40786 µs 250 17 6.2e-10 1.8e-09

16 Get 0.56758 µs 263 100 1.1e-08 5.9e-08

16 HpGet 0.55811 µs 264 103 1.1e-08 6.2e-08

16 HpPut 0.42995 µs 239 103 8.0e-09 3.2e-08

16 Put 0.59545 µs 223 342 6.6e-07 3.3e-07

16 Send 0.51066 µs 163 14 5.5e-10 1.6e-09

32 Get 0.60649 µs 256 136 1.5e-08 3.1e-08

32 HpGet 0.60302 µs 257 136 1.4e-08 3.2e-08

32 HpPut 0.42796 µs 243 146 1.1e-08 1.5e-08

32 Put 0.59823 µs 174 468 4.7e-07 2.0e-07

32 Send 0.44904 µs 181 16 1.3e-10 4.2e-10
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Appendix D

Matrix Multiplication Results —

Customized Data Distribution

D.1 Results on Shared Memory (skua)

Table D.1: Efficiency and mean relative prediction error on skua

Oxtool PUB MPI-2

q Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

4 processors

8 78.91 17.4 17.2 70.30 15.3 15.9 78.72 12.6 12.5

64 74.33 12.8 15.5 66.45 35.6 34.6 83.71 22.6 26.3

125 71.07 14.2 13.3 64.35 7.1 7.6 80.97 24.0 23.9

216 72.26 11.0 13.5 65.81 33.7 33.4 80.58 26.2 31.5

343 66.68 8.8 8.8 62.27 35.0 34.2 79.65 27.1 34.3

512 71.11 16.5 22.5 65.62 30.3 30.5 81.99 33.9 39.0

729 63.61 8.3 10.4 58.92 29.8 31.4 76.74 30.0 36.7

10 processors

64 56.34 17.1 12.9 53.20 28.2 25.3 63.42 8.6 9.9

125 61.87 8.6 4.8 57.58 17.0 8.2 71.78 11.9 10.6

216 60.28 18.8 16.1 56.79 29.7 31.0 76.02 17.2 18.8

343 58.12 20.6 18.7 54.53 28.4 35.1 76.73 23.0 23.9

512 55.34 22.2 22.7 52.37 27.3 34.6 73.65 20.7 21.1

729 49.69 26.9 27.9 46.65 29.3 40.3 69.21 16.4 18.2

16 processors
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Oxtool PUB MPI-2

q Efficiency error (%) Efficiency error (%) Efficiency error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

64 64.16 18.5 18.1 57.13 33.0 36.5 78.67 12.8 14.1

125 57.02 10.9 5.9 53.91 21.4 7.8 70.00 18.7 15.9

216 55.74 19.3 17.1 53.01 28.2 31.7 72.78 19.0 19.8

343 51.94 24.4 25.1 48.75 29.8 40.7 69.44 16.3 18.3

512 56.71 14.7 17.3 51.67 26.2 36.0 73.76 24.3 22.1

729 46.31 26.5 30.9 43.36 27.9 44.1 65.99 18.9 18.7

32 processors

125 46.18 57.6 57.8 47.75 53.5 45.9 55.00 48.4 42.4

216 40.50 54.8 56.8 38.59 54.5 66.5 59.49 38.3 33.7

343 47.47 33.6 38.2 39.03 53.6 64.8 50.05 47.3 41.8

512 46.17 46.7 51.4 26.29 52.7 72.8 51.30 47.9 42.1

729 41.01 49.0 54.0 21.50 59.6 74.5 55.73 49.3 40.5

D.2 Results on Distributed Memory, Ethernet (argus)

Table D.2: Efficiency and mean relative prediction error on argus

Oxtool PUB MPI

q Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

4 processors

8 36.35 83.9 83.9 34.74 82.7 82.8 - - -

64 20.90 84.3 84.3 15.91 79.4 79.6 10.16 64.8 65.7

125 10.67 76.7 76.7 8.09 68.0 68.5 4.71 44.8 46.3

216 14.53 79.2 78.8 11.05 61.4 60.5 7.14 60.9 62.4

343 6.79 66.1 68.9 4.46 43.8 43.2 3.20 38.6 45.6

512 9.83 77.0 79.0 6.65 60.3 62.2 4.60 54.5 59.0

729 5.30 64.8 67.3 3.45 38.0 38.0 2.40 35.7 43.4

10 processors

64 6.71 66.5 66.6 5.98 63.9 61.7 3.58 31.9 32.2

125 5.13 58.6 58.8 5.04 59.7 55.9 2.60 17.9 18.4

216 3.96 51.7 56.1 3.18 34.3 35.5 2.04 10.1 16.7

343 3.59 53.4 58.3 2.91 35.3 37.8 1.80 13.3 20.5

512 2.79 47.1 50.5 2.17 32.4 30.3 1.35 4.1 7.5

729 2.37 41.8 47.8 1.75 25.0 28.2 1.14 7.2 5.7
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D.3 Results on Distributed Memory, Myrinet (aracari)

Table D.3: Efficiency and mean relative prediction error on aracari

Oxtool PUB MPI

q Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

4 processors

8 91.20 4.3 4.3 78.08 22.4 22.4 79.20 22.7 22.7

64 76.54 10.2 11.6 60.49 25.6 25.6 66.35 14.3 14.3

125 69.52 9.8 9.7 53.60 23.1 23.0 52.62 20.3 20.4

216 65.56 12.9 16.4 48.78 32.3 29.2 52.39 17.4 17.4

343 62.25 8.5 14.4 45.29 23.8 21.4 46.89 19.8 16.0

512 60.32 18.0 22.2 44.81 25.4 23.3 50.59 11.5 12.9

729 58.23 11.8 18.2 41.42 18.3 17.8 43.11 17.1 13.3

10 processors

64 65.18 14.1 15.5 54.20 14.1 13.2 48.60 16.6 15.1

125 59.71 12.1 10.1 42.09 23.7 22.2 42.54 22.0 23.1

216 56.71 8.9 10.0 43.70 27.3 24.5 39.85 22.4 21.6

343 54.85 15.0 15.9 42.65 19.0 16.0 38.56 17.4 16.5

512 50.83 8.8 8.6 37.09 22.0 18.6 32.44 24.0 23.7

729 46.59 6.7 6.0 35.29 18.7 14.9 30.64 24.7 24.6

16 processors

64 66.39 8.5 8.3 48.16 30.7 29.9 47.89 27.0 27.3

125 59.01 25.4 23.0 46.87 17.9 16.8 39.31 15.9 15.8

216 52.92 18.2 17.9 39.87 28.8 26.4 35.29 19.7 19.5

343 47.98 10.7 10.4 35.95 23.2 19.6 31.99 23.8 23.9

512 42.61 8.3 4.0 26.75 33.6 31.7 26.53 33.1 35.0

729 41.96 9.5 6.7 29.49 19.8 16.0 26.08 26.4 27.8

32 processors

125 50.29 10.2 5.2 40.54 26.3 27.0 36.15 24.5 24.0

216 47.54 12.7 9.1 38.07 61.0 61.7 33.29 30.6 29.3

343 46.14 6.8 2.4 37.84 53.4 54.3 34.88 18.0 15.9

512 39.51 20.2 21.9 30.42 57.3 58.2 28.09 29.4 29.3

729 38.01 12.0 12.8 30.21 56.1 58.0 28.55 21.8 20.9
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Appendix E

Matrix Multiplication Results —

Static Data Distribution

E.1 Results on Shared Memory (skua)

Table E.1: Efficiency and mean relative prediction error on skua

Oxtool PUB MPI-2

q Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

4 processors

8 75.96 18.3 25.0 67.82 15.6 21.7 76.50 14.7 22.1

64 54.72 38.5 10.4 13.55 87.4 79.3 65.75 8.2 28.5

125 49.84 42.6 5.3 8.23 90.2 83.6 60.92 7.7 36.7

216 49.84 44.7 5.6 9.93 88.4 78.6 67.83 6.9 47.8

343 44.55 50.1 3.9 5.75 89.6 80.4 64.86 7.8 51.1

512 41.72 52.8 3.7 8.92 88.7 78.1 66.71 12.0 55.6

729 37.57 55.7 5.1 5.65 88.8 78.1 64.09 12.3 58.3

10 processors

64 55.83 17.2 22.9 52.28 27.8 22.4 64.11 16.1 35.6

125 38.68 61.3 33.7 44.33 79.8 71.1 49.03 19.8 28.7

216 35.02 64.7 35.0 12.48 81.1 70.2 56.40 9.8 39.4

343 32.15 66.1 35.8 12.76 79.2 68.1 58.40 3.9 44.8

512 26.75 71.7 44.3 15.31 79.6 69.5 58.50 4.5 45.2

729 22.42 75.2 51.8 10.34 82.1 74.6 54.62 7.3 43.1

16 processors
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Oxtool PUB MPI-2

q Efficiency error (%) Efficiency error (%) Efficiency error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

64 63.27 17.6 17.2 55.93 32.2 28.5 78.54 18.7 37.1

125 36.91 60.3 33.5 16.06 75.9 67.7 40.60 29.5 24.1

216 30.20 66.7 41.9 12.13 77.8 71.7 49.18 16.8 29.6

343 24.69 72.6 52.6 10.38 79.7 76.1 47.67 15.3 30.0

512 18.53 78.9 62.2 13.54 81.6 79.0 52.03 9.2 37.0

729 17.08 78.1 61.4 8.28 80.1 79.1 47.40 12.7 32.6

32 processors

125 32.14 57.5 17.4 11.48 66.5 59.9 30.31 24.6 31.6

216 46.73 26.9 15.7 42.93 34.0 33.1 61.52 22.3 35.9

343 24.40 63.4 35.9 10.13 62.7 66.3 39.66 11.5 38.0

512 17.80 73.0 56.5 7.68 69.2 78.6 48.88 22.9 44.6

729 14.76 72.7 55.0 6.94 65.8 76.7 42.65 12.9 38.6

E.2 Results on Distributed Memory, Ethernet (argus)

Table E.2: Efficiency and mean relative prediction error on argus

Oxtool PUB MPI

q Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

4 processors

8 36.10 86.4 89.2 - - - - - -

64 6.55 38.9 51.6 4.90 35.1 50.0 3.91 25.3 47.9

125 4.63 46.9 59.7 3.98 44.0 57.0 2.92 20.9 48.1

216 3.85 33.8 47.4 2.57 19.6 45.4 2.04 13.9 38.7

343 3.18 43.0 57.9 2.41 32.2 51.1 1.92 9.3 45.5

512 2.49 27.8 46.5 2.11 23.5 42.1 1.40 15.1 34.4

729 2.48 41.9 56.6 1.85 29.7 48.0 1.43 6.0 45.1

10 processors

64 4.04 49.1 69.1 4.37 54.5 70.7 3.99 46.9 66.8

125 2.83 31.2 56.8 1.81 39.2 28.7 2.16 16.8 52.3

216 1.83 32.2 41.0 1.12 57.6 20.5 1.61 25.2 41.8

343 1.93 30.9 48.0 1.00 60.3 24.5 1.70 22.4 46.1

512 1.27 44.5 22.9 0.75 70.3 39.2 1.18 35.9 23.1

729 1.16 40.5 35.1 0.57 72.9 44.2 1.08 29.1 32.5
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E.3 Results on Distributed Memory, Myrinet (aracari)

Table E.3: Efficiency and mean relative prediction error on aracari

Oxtool PUB MPI

q Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h, h∗) (%) const . g g(h, h∗) (%) const . g g(h, h∗)

4 processors

8 90.30 5.7 14.8 79.99 17.8 12.5 87.70 4.7 10.9

64 63.65 21.4 16.5 21.82 78.7 69.1 62.94 25.2 15.5

125 58.49 22.9 16.5 25.19 71.9 55.1 56.24 26.6 15.0

216 55.64 21.9 21.7 24.15 74.8 55.3 52.56 25.6 17.8

343 51.40 25.2 21.8 24.52 71.0 48.0 46.94 28.6 17.7

512 48.98 28.0 23.3 24.31 72.4 49.5 43.69 28.6 19.2

729 46.64 27.6 26.0 22.30 70.4 43.6 40.91 28.0 20.1

10 processors

64 64.30 16.0 31.3 56.30 11.2 25.0 59.13 13.2 26.6

125 44.21 35.5 8.0 12.54 83.3 75.2 43.61 34.7 12.6

216 42.20 34.0 6.3 8.66 86.6 78.5 40.19 33.9 10.5

343 42.41 29.9 7.3 8.68 85.0 76.3 37.17 30.6 8.1

512 37.34 38.5 8.8 5.87 89.1 82.2 32.88 34.7 11.1

729 33.11 43.0 10.1 6.06 88.5 81.6 28.61 38.8 14.8

16 processors

64 66.19 13.1 26.9 56.34 19.1 10.6 64.29 8.5 20.7

125 41.87 29.4 5.0 11.97 81.8 74.4 41.90 28.9 6.8

216 39.36 31.5 4.9 8.11 85.5 78.3 35.56 35.4 12.3

343 35.36 37.0 9.9 5.03 89.4 84.6 30.98 38.2 17.2

512 29.82 47.2 22.8 3.26 91.8 87.8 27.27 44.3 24.7

729 27.80 44.9 19.7 3.64 90.2 85.8 24.21 42.0 22.6

32 processors

125 33.50 43.9 13.9 11.34 83.9 72.6 33.05 42.4 16.2

216 46.16 14.7 13.4 36.24 57.2 53.8 32.42 27.9 21.6

343 33.14 39.9 8.0 7.42 84.5 76.6 26.04 41.3 19.6

512 28.09 51.8 29.8 4.88 88.3 83.9 19.94 51.1 36.9

729 23.89 50.7 26.5 3.53 89.4 85.2 18.78 47.9 31.2
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Appendix F

LLCS Computation — Standard

Algorithm

F.1 Results on Shared Memory (skua)

Table F.1: Efficiency and mean relative prediction error on skua

Oxtool PUB MPI-2

α Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

4 processors

1 58.05 3.8 3.8 109.06 29.0 29.1 60.06 1.3 1.3

2 76.10 1.4 1.4 55.98 24.4 24.6 75.40 1.3 1.4

3 81.16 1.5 1.5 57.92 28.0 28.3 80.97 1.2 1.3

4 85.35 1.7 1.6 - - - 85.42 1.2 1.5

5 88.21 2.4 2.3 63.10 26.6 27.0 88.11 1.3 1.6

8 processors

1 58.21 2.8 2.7 40.66 30.2 30.0 57.10 3.0 3.1

2 70.39 1.7 1.4 53.42 26.0 25.4 70.21 2.1 2.4

3 78.30 2.1 1.5 56.07 30.8 29.6 78.12 2.4 3.0

4 82.95 2.7 1.8 59.40 31.8 30.1 82.76 3.0 3.9

5 85.96 3.4 2.3 61.50 32.8 30.7 85.82 3.8 5.0

16 processors

1 52.15 1.9 1.3 39.65 23.4 23.1 56.29 4.0 4.0

2 68.62 2.8 1.6 52.19 20.8 20.4 68.31 4.2 4.2

3 76.76 4.1 2.4 66.49 18.9 18.6 75.94 5.7 5.7

4 80.99 4.5 2.2 61.57 17.7 17.4 79.69 7.5 7.5

Continued on the next page...
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...continued from last page.

Oxtool PUB MPI-2

α Efficiency error (%) Efficiency error (%) Efficiency error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

5 83.03 5.4 2.2 63.37 16.5 16.0 80.91 9.2 9.2

32 processors

1 51.07 4.8 3.2 37.03 27.0 26.0 50.81 3.8 2.7

2 66.53 6.1 3.1 48.01 23.1 20.9 64.87 6.4 3.6

3 71.29 9.5 3.7 51.93 22.4 18.9 67.16 9.2 4.4

4 71.20 12.7 4.4 96.33 20.5 16.4 64.08 12.0 5.9

5 68.17 15.2 4.8 52.64 19.6 14.1 57.34 16.4 9.6

F.2 Results on Distributed Memory, Ethernet (argus)

Table F.2: Efficiency and mean relative prediction error on argus

Oxtool PUB MPI

α Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

4 processors

1 80.41 1.7 2.1 80.54 2.2 1.3 79.96 3.3 1.6

2 101.65 2.3 1.7 101.36 6.8 2.2 99.73 2.7 2.7

3 110.35 3.7 2.5 109.15 11.0 3.0 - - -

4 115.51 4.3 2.8 114.76 13.9 2.1 109.05 2.1 6.5

5 117.90 5.1 3.0 115.41 17.7 2.2 108.83 1.4 8.8

10 processors

1 70.59 8.1 11.1 71.22 6.7 7.1 67.39 7.3 8.5

2 90.11 10.9 18.3 89.45 12.9 8.0 75.83 4.3 6.8

3 96.80 12.0 23.9 96.44 20.0 8.9 - - -

4 97.79 12.5 28.1 97.09 25.8 10.5 54.75 1.8 5.5

5 96.79 13.4 32.3 94.14 30.0 12.1 43.31 1.4 5.4
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F.3 Results on Distributed Memory, Myrinet (aracari)

Table F.3: Efficiency and mean relative prediction error on aracari

Oxtool PUB MPI

α Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

4 processors

1 40.63 0.9 0.9 40.05 16.4 16.3 40.33 0.8 0.8

2 51.74 0.8 0.8 51.32 2.4 2.4 51.30 0.9 0.8

3 57.01 0.6 0.6 56.38 2.0 1.9 56.48 0.7 0.6

4 60.14 0.7 0.8 59.40 1.7 1.6 59.54 0.8 0.6

5 62.30 1.0 1.1 61.43 1.7 1.5 61.47 1.0 0.9

8 processors

1 37.15 2.4 2.2 36.81 9.6 9.3 36.95 2.7 2.7

2 48.80 1.1 1.6 48.44 2.5 1.7 48.38 1.6 1.7

3 55.38 1.8 3.0 54.18 2.2 1.0 53.74 0.9 1.0

4 58.92 2.6 4.3 57.45 2.5 0.8 56.82 0.6 0.7

5 61.24 3.1 4.9 59.69 3.0 0.7 58.63 0.9 1.0

16 processors

1 35.43 2.9 3.4 35.26 4.5 4.1 35.06 3.9 3.3

2 47.23 1.2 3.7 46.98 3.2 3.0 45.83 2.6 1.2

3 53.90 2.7 6.4 52.60 3.8 3.4 49.64 2.7 0.6

4 56.83 3.2 8.2 55.27 4.8 4.3 49.63 2.7 0.3

5 58.17 3.6 10.7 56.43 5.7 5.5 47.73 3.3 0.3

32 processors

1 34.45 2.6 5.2 34.36 4.3 5.3 33.08 4.4 2.2

2 45.31 2.5 11.3 45.11 3.1 9.4 38.06 3.9 1.1

3 48.91 3.9 16.1 48.35 3.6 14.7 33.26 4.5 1.4

4 47.57 3.6 18.8 48.24 4.3 18.8 26.83 4.5 2.2

5 43.43 2.9 20.1 45.99 5.9 21.1 20.92 5.3 1.9
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Appendix G

LLCS Computation — Bit-Parallel

Algorithm

G.1 Results on Shared Memory (skua)

Table G.1: Efficiency and mean relative prediction error on skua

Oxtool PUB MPI-2

α Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

4 processors

1 80.06 29.1 29.1 85.18 30.7 30.7 79.46 29.2 29.3

2 83.98 32.2 32.2 87.81 31.4 31.5 83.07 32.2 32.2

3 85.00 38.7 38.7 80.57 37.3 37.4 84.65 39.2 39.2

4 71.11 49.9 49.9 73.63 47.6 47.8 69.43 50.4 50.5

5 70.30 57.7 57.7 67.49 56.7 56.9 69.95 57.8 58.0

8 processors

1 60.10 33.4 33.4 64.18 32.5 32.5 60.35 32.5 32.6

2 58.03 52.8 52.8 60.24 51.2 51.1 57.45 53.3 53.5

3 53.80 62.0 62.1 52.71 61.5 61.5 53.63 62.0 62.3

4 46.54 68.6 68.6 45.96 69.1 69.1 44.05 69.9 70.2

5 41.18 75.1 75.1 40.85 75.4 75.3 40.78 82.8 83.7

16 processors

1 42.48 53.8 53.8 44.71 51.1 51.2 42.39 53.7 53.8

2 37.64 70.2 70.2 37.89 69.2 69.4 37.49 69.9 70.3

3 30.38 77.4 77.5 30.50 76.1 76.5 30.23 77.2 77.6

4 24.97 81.7 81.8 25.82 80.2 80.7 24.61 81.4 82.0

Continued on the next page...
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...continued from last page.

Oxtool PUB MPI-2

α Efficiency error (%) Efficiency error (%) Efficiency error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

5 21.78 84.4 84.5 22.23 82.8 83.5 21.43 83.7 84.5

32 processors

1 27.33 71.0 71.0 27.95 70.3 70.6 27.11 70.8 70.9

2 20.42 81.8 81.8 21.30 80.6 81.5 20.16 80.3 80.6

3 16.30 84.9 84.9 16.80 84.1 85.2 16.07 82.8 83.2

4 13.31 86.6 86.5 13.79 85.6 87.0 13.01 83.8 84.3

5 11.41 86.5 86.5 11.68 85.4 87.4 11.16 82.8 83.5

G.2 Results on Distributed Memory, Ethernet (argus)

Table G.2: Efficiency and mean relative prediction error on argus

Oxtool PUB MPI

α Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

4 processors

1 56.09 2.0 2.8 56.34 3.4 2.5 56.11 2.9 2.1

2 71.43 2.7 1.5 71.56 6.5 1.5 70.60 1.5 3.0

3 79.27 3.9 1.6 79.35 10.4 2.0 77.53 1.0 5.0

4 83.35 6.5 2.8 84.08 14.0 2.4 80.45 1.8 7.3

5 86.33 8.5 3.5 86.44 17.1 2.9 81.93 2.8 9.5

10 processors

1 47.93 8.9 11.0 48.17 8.8 7.1 46.95 7.4 8.3

2 64.12 4.3 9.7 64.19 12.5 3.8 57.77 2.8 4.3

3 71.25 1.7 9.5 70.33 20.0 3.5 - - -

4 74.12 2.4 10.4 72.66 25.9 4.2 50.92 1.5 1.7

5 74.26 2.5 13.3 71.25 30.4 5.1 42.90 1.9 1.7
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G.3 Results on Distributed Memory, Myrinet (aracari)

Table G.3: Efficiency and mean relative prediction error on aracari

Oxtool PUB MPI

α Efficiency rel. error (%) Efficiency rel. error (%) Efficiency rel. error (%)

(%) const . g g(h) (%) const . g g(h) (%) const . g g(h)

4 processors

1 56.60 1.8 1.9 56.54 14.6 14.6 56.62 1.8 1.8

2 72.06 1.6 1.8 71.96 10.0 10.1 72.06 1.8 1.8

3 79.57 3.1 4.0 79.74 2.3 2.5 79.83 1.3 1.3

4 84.51 1.1 1.4 84.23 2.1 2.3 84.36 1.3 1.3

5 87.58 1.3 1.7 87.29 2.6 2.9 87.38 1.7 1.6

8 processors

1 50.51 6.0 6.1 50.46 12.5 12.5 50.51 5.8 6.0

2 67.46 3.8 4.0 67.34 4.7 4.8 67.27 6.1 6.4

3 73.88 5.2 6.2 75.65 4.7 4.9 75.52 3.2 3.8

4 81.11 2.2 2.7 80.68 4.7 4.9 80.34 2.7 3.5

5 84.28 2.2 2.7 83.77 5.6 5.8 83.03 2.8 3.9

16 processors

1 46.60 15.8 16.1 47.57 9.4 9.4 47.57 8.7 8.8

2 64.86 5.4 5.6 64.65 7.4 7.4 63.84 7.0 7.2

3 70.77 5.6 6.2 72.81 7.7 7.7 70.68 7.0 7.3

4 77.96 3.5 3.9 77.36 7.8 7.8 72.96 7.1 7.5

5 80.61 4.2 4.8 79.85 9.6 9.6 73.43 5.7 6.2

32 processors

1 45.98 8.3 8.4 45.91 9.9 9.8 45.14 9.9 9.9

2 62.04 4.1 4.4 61.97 7.9 7.8 56.01 8.0 8.1

3 68.56 3.2 3.6 68.51 7.8 7.7 56.07 6.1 6.2

4 70.40 2.3 2.8 70.74 8.3 8.1 50.65 5.7 5.9

5 47.85 3.9 4.8 70.65 9.5 9.3 43.82 6.0 6.2
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