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In this talk. . .

. . . we show new parallel algorithms for
computing string alignments and longest
increasing subsequences.

Our new algorithms achieve scalable
computation as well as scalable
communication cost.



Talk Outline

I Parallel computation and scalability
II Longest increasing subsequences and
longest common subsequences

III Our new algorithms
IV Summary and outlook



Outline

Parallel Algorithms
Modelling parallel computation
Modelling parallel algorithms

Longest Increasing Subsequences
Problem analysis
Previous parallel LIS algorithms

Monge matrices
Monge matrices in string comparison
Distance multiplication

Parallel distance multiplication
Sequential algorithm
Parallel algorithm

Applications in string comparison



Modelling parallel computation

A BSP computer with p
processors/
cores/threads.

External and
per-processor memory.

Superstep-style program
execution.
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Sequential Algorithms

We have a problem of size n. We study
. . . the total work W(n)

. . . the memory requirementM(n)

. . . the input/output size: I(n)

We assume that the input and output are
stored in the environment (e.g. external
memory).



Parallel Algorithms

Across all supersteps of the algorithm,
we look at

. . . the computation time: W (n; p)

. . . the communication cost: H(n; p)

. . . the local memory cost: M(n; p)

How to do these costs relate to
scalability?
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Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a
sequential algorithm) if

W (n; p) = O

„W(n)

p

«
:

We have absolute work-optimality if ˙(W(n)) is a
lower bound on the total work for the given problem,
and the given model.
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Scalable Communication and Memory

Scalable communication:
An algorithm achieves
asymptotically scalable
communication if
H(n; p) = O(I(n)=pc)
(assuming 0 < c).

Scalable memory:
An algorithm achieves
asymptotically scalable memory
if M(n; p) = O(M(n)=pc).
(assuming 0 < c).
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Example

Example (Grid dag dynamic programming)

Work-optimality is no problem.

However: No algorithm can achieve
work-optimality and scalable communication at
the same time! [Papadimitriou/Ullman:87]
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The Problem

Given a sequence of n numbers, to find
the longest subsequence that is
increasing.

2, 9, 1, 3, 7, 5 , 6, 4, 8
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The Problem

Given a sequence of n numbers, to find
the longest subsequence that is
increasing.

2, 9, 1, 3, 7, 5, 6, 4, 8

(alternate solution)



Sequential LIS Algorithms

The LIS can be found by patience
sorting.
(see [Knuth:73, Aldous/Diaconis:99, Schensted:61]).

Another approach: LIS via permutation
string comparison.
(see [Hunt/Szymanski:77]).

For both algorithms, W(n) = O(n logn) in the
comparison-based model.



Permutation String Comparison

Definition (Input data)
Let x = x1x2 : : : xn and y = y1y2 : : : yn be two
permutation strings on an alphabet ˚.

Definition (Subsequences)
A subsequence u of x: u can be obtained by deleting
zero or more elements from x.

Definition (Longest Common Subsequences)
An LCS (x, y) is any string which is subsequence of
both x and y and has maximum possible length.
Length of these sequences: LLCS (x, y).



LIS via LCS

How to compute comparison-based LIS
using LCS computation?

1. Copy the sequence and sort it.
2. Compute the LCS of the sequence

and its sorted copy.



LCS grid dags and highest-score matrices

I The LCS Problem can be
represented as longest
path problem on a grid
dag.

I In the LIS case, we have
n diagonal edges of
length 1.

I Horizontal edges have
length 0.

I The LIS corresponds to a
longest top-to-bottom
path.
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Parallel LIS Algorithms

Garcia, 2001

LIS by parallel dynamic programming.

W (n; p) = O(n2=p)

This is not work optimal.



Parallel LIS Algorithms

Nakashima/Fujiwara, 2006

PRAM algorithm with

W (n; p) = O((n logn)=p)

(. . . but only if p < n=k2)

Work-optimality is restricted:
Theorem (Erdős, 1935)
Every sequence of n integers has a monotonic
subsequence of length –

p
n.
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Parallel LIS Algorithms

Semé, 2006

BSP algorithm with

W (n; p) = O(n log(n=p))

This is asymptotically sequential.



Our LIS algorithm

LIS computation for a sequence of
length n:

W (n; p) = O

„
n log2 n

p

«
H(n; p) = O

„
n log p

p

«
M(n; p) = O

„
n

p

«
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Our Tool: Semi-local Sequence Comparison

Definition (Highest-score matrix)

The element A(i; j) of the LCS
highest-score matrix of two strings x and
y gives the LLCS of substring yi : : : yj
and x.

Definition (Semi-local LCS)

Solutions to the semi-local LCS problem
are given by a highest-score matrix
A(i; j).



Why highest-score matrices?

Space efficiency, [Tiskin:05]

For strings x and y of lengths m and n,
we can store highest-score matrix Ax;y in
O(m+ n) space.

Composition, [Tiskin:2009]

Consider three strings x, y, z of length n.
Knowing Ax;z and Ay;z, we can compute
Axy;z (implicitly) in O(n logn) time.

How?
Highest-score matrices have a Monge
property.
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Monge matrices

D˚ =

0BBBBBBBB@

0 1 2 3 4 5 6
0 0 1 2 3 4 5
0 0 1 2 2 3 4
0 0 1 2 2 3 3
0 0 0 1 1 2 2
0 0 0 1 1 1 1
0 0 0 0 0 0 0

1CCCCCCCCA
D =

0BBBBBB@
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0

1CCCCCCA

Density matrix: Distribution matrix:

D(i; j) = D˚(i+ 1; j)`D˚(i; j)`D˚(i+ 1; j + 1) +D˚(i; j + 1)

If (D˚)� = D, we call D simple.

If D is non-negative, D˚ is Monge.

If D is a permutation matrix, D˚ is unit-Monge.
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Distance multiplication

We compute the product

P˚
C = P˚

A ˛ P
˚
B

of two simple unit-Monge matrices P˚
A

and P˚
B with

P˚
C (i; k) = minj(P

˚
A (i; j) + P˚

B (j; k)):

Our inputs are the permutations
corresponding to matrices PA and PB.

We output the permutation for PC.
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Sequential distance multiplication

We parallelize the
sequential algorithm
from [Tiskin:09].

We start with the
cube of elementary
distance products.

P˚
B (j; k)

P˚
C (i; k)

i

k

j

P˚
A (i; j)

minP˚
A

(i; j) + P˚
B

(j; k)



Sequential distance multiplication

In each recursive
step of this
algorithm we split
PA and PB into
half-sized hi/lo
ranges over j.

PB(j; k)

PC(i; k)

i

k

j

PA(i; j)



Sequential distance multiplication

The two products
P˚
A;lo
˛ P˚

B;lo
,

P˚
A;hi
˛ P˚

B;hi

induce a
permutation P 0C
from which we can
compute PC.

PB(j; k)

PC(i; k)

i

k

j

PA(i; j)



Sequential distance multiplication

We compute the
nonzeros in PC from
the nonzeros in P 0C
using a linear-time
sweep.

PB(j; k)

PC(i; k)

i

k

j

PA(i; j)



Sequential distance multiplication

O(n) for the
divide/conquer
steps + two
half-sized
subproblems:

Overall time
O(n logn).

PB(j; k)

PC(i; k)

i

k

j

PA(i; j)



Sequential distance multiplication

How to work out the nonzeros in PC from
the hi/lo products?

We have:

P˚
C (i; k) = min(P˚

C;lo
(i; k) + P˚

C;hi
(0; k);

P˚
C;hi

(i; k) + P˚
C;lo

(i; n) ):



Sequential distance multiplication

How to work out the nonzeros in PC from
the hi/lo products?

Looking at the difference

‹(i; k) = (P˚
C;lo

(i; k) + P˚
C;hi

(0; k))

`(P˚
C;hi

(i; k) + P˚
C;lo

(i; n));

we get

‹(i; k) =
P

{̂2h0:ii;k̂2h0:ki PC;hi({̂; k̂)

`
P

{̂2hi:ni;k̂2hk:ni PC;lo({̂; k̂):



Sequential distance multiplication

How to work out the nonzeros in PC from
the hi/lo products?

The sign of ‹ tells us which nonzeros to
use. We separate three areas in PC:

Colour(i; k) = red if ‹(i; k) < 0

Colour(i; k) = green if ‹(i; k) = 0

Colour(i; k) = blue if ‹(i; k) > 0



Sequential distance multiplication

How to work out the nonzeros in PC from
the hi/lo products?

I blue areas: use
nonzeros from
PC;hi

I red areas: use
nonzeros from PC;lo

I green areas: use
nonzeros from
PC;hi or PC;lo, and
“special” nonzeros
at intersections.

PB(j; k)

PC(i; k)

i

k

j

PA(i; j)



Sequential distance multiplication

How to work out the nonzeros in PC from
the hi/lo products?

Colours can be
computed
incrementally )
O(n) time to
trace boundary of
green area.

δ(i, k) < 0

δ(i, k) > 0

i

k

PC(n− 1
2
, 1
2
)

Case (b): go right

Case (c): go up

Case (a): go up



Parallel distance multiplication

We compute colours
of points on a pˆ p
grid.

k

i



Parallel distance multiplication

‹(i; k) = ‹hi(i; k)

`‹lo(i; k)

i

k

i; k

‹hi(i; k) =
X

{̂2h0:ii;k̂2h0:ki

PC;hi({̂; k̂)

‹lo(i; k) =
X

{̂2hi:ni;k̂2hk:ni

PC;lo
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Parallel distance multiplication

‹(i; k) = ‹hi(i; k)

`‹lo(i; k)

i

k

i; k

‹hi(i; k) =
X

{̂2h0:ii;k̂2h0:ki

PC;hi({̂; k̂)

‹lo(i; k) =
X

{̂2hi:ni;k̂2hk:ni

PC;lo



Parallel distance multiplication

Computing ‹ values
on grid points by
parallel prefix:

W (n; p) = O(n=p)

H(n; p) = O(p2)

M(n; p) = O(n=p)

n > p3

i

k

‹hi(i; k) =
X

{̂2h0:ii;k̂2h0:ki

PC;hi({̂; k̂)

‹lo(i; k) =
X

{̂2hi:ni;k̂2hk:ni

PC;lo

1 2 3 4



Parallel distance multiplication

Maximally 4p
blocks can have a
non-monochromatic
set of corners.



Parallel distance multiplication

We already know the locations of the nonzeros in
PC for all monochromatic blocks.

For all i; k within the block, we have:. . .

I monochromatic blue blocks:
PC(i; k) = PC;hi(i; k)

I monochromatic red blocks:
PC(i; k) = PC;lo(i; k)

I monochromatic green blocks: PC(i; k) = 0

In non-monochromatic blocks, we have to
separate the green, blue and red areas in time
O(n=p) per block.
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Parallel distance multiplication

Given the nonzeros of two nˆ n permutation
matrices PA and PB, distributed equally across
p < 3
p
n processors, we can compute the nonzeros

of a matrix PC with P˚
C = P˚

A ˛ P
˚
B using

W (n; p) = O

„
n logn

p

«
H(n; p) = O

„
n

p
log p

«
M(n; p) = O

„
n

p

«
S = O(log p)
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LCS computation by distance multiplication

We use parallel distance
multiplication in a
quadtree merging
scheme.

References W (n; p) H(n; p) M(n; p) S

McColl ’95 + Wag-
ner/Fischer+:74

O(n
2

p
)

O(n) O(n
p
) O(p)

McColl ’95 + Alves et
al. ’06, Tiskin’ 05

O(n) O(n
p
) O(p)

[KT:07] O
“
n log pp
p

”
O( np

p
) O(log p)

Shown here
O
“
np
p

”
O( np

p
) O(log2 p)



LIS computation by distance multiplication

We merge (horizontal)
strips.

1 2 3

n=4

n=4

n=4

n=4

n=2

n=2

n

We get for n > p3:

W (n; p) = O

„
n log2 n

p

«
H(n; p) = O

„
n log p

p

«
M(n; p) = O

„
n

p

«
S = O

`
log2 p

´



Summary and outlook

Summary

I We have shown new scalable algorithms for
LCS/LIS computation.

I Our algorithms are scalable in communication and
memory as well as computation.

Open questions

I How to achieve work-optimality for the LIS
problem?

I Is H(n; p) = O(n=
p
p) a lower bound for LCS

computation?



Thanks! Questions?
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