New algorithms for efficient parallel string comparison

Peter Krusche Alexander Tiskin
Department of Computer Science and DIMAP University of Warwick, Coventry, CV4 7AL, UK

SPAA 2010

In this talk. . .

... we show new parallel algorithms for computing string alignments and longest increasing subsequences.

Our new algorithms achieve scalable computation as well as scalable communication cost.

Talk Outline

I Parallel computation and scalability
II Longest increasing subsequences and longest common subsequences
III Our new algorithms
IV Summary and outlook

Outline

Parallel Algorithms
Modelling parallel computation Modelling parallel algorithms

Longest Increasing Subsequences
Problem analysis
Previous parallel LIS algorithms
Monge matrices
Monge matrices in string comparison
Distance multiplication
Parallel distance multiplication
Sequential algorithm
Parallel algorithm
Applications in string comparison

Modelling parallel computation

A BSP computer with p processors/
cores/threads.

per-processor memory.

Superstep-style program
execution.

Modelling parallel computation

A BSP computer with p processors/
cores/threads.
External and
 per-processor memory.

Modelling parallel computation

A BSP computer with p processors/
cores/threads.
External and
 per-processor memory.

Superstep-style program execution.

Sequential Algorithms

We have a problem of size n. We study . . . the total work $\mathcal{W}(n)$
... the memory requirement $\mathcal{M}(n)$... the input/output size: $\mathcal{I}(n)$

We assume that the input and output are stored in the environment (e.g. external memory).

Parallel Algorithms

Across all supersteps of the algorithm, we look at
... the computation time: $W(n, p)$
...the communication cost: $H(n, p)$
... the local memory cost: $M(n, p)$

Parallel Algorithms

Across all supersteps of the algorithm, we look at
... the computation time: $W(n, p)$
... the communication cost: $H(n, p)$
... the local memory cost: $M(n, p)$
How to do these costs relate to scalability?

Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential algorithm) if

$$
W(n, p)=O\left(\frac{\mathcal{W}(n)}{p}\right)
$$

Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential algorithm) if

$$
W(n, p)=O\left(\frac{\mathcal{W}(n)}{p}\right)
$$

We have absolute work-optimality if $\Omega(\mathcal{W}(n))$ is a lower bound on the total work for the given problem, and the given model.

Scalable Communication and Memory

Scalable communication:

An algorithm achieves asymptotically scalable communication if
$H(n, p)=O\left(\mathcal{I}(n) / p^{c}\right)$
(assuming $0<c$).
Scalable
An algorithm achieves asymptotically scalable if $M(n, p)=O\left(M(n) / p^{c}\right)$.
(assuming $0<c$).

Scalable Communication and Memory

Scalable communication:

An algorithm achieves asymptotically scalable communication if
$H(n, p)=O\left(\mathcal{I}(n) / p^{c}\right)$
(assuming $0<c$).
Scalable memory:
An algorithm achieves
asymptotically scalable memory if $M(n, p)=O\left(\mathcal{M}(n) / p^{c}\right)$.
(assuming $0<c$).

Example

Example (Grid dag dynamic programming)
Work-optimality is no problem.

However: No algorithm can achieve
work-optimality and scalable communication at
the same time! [Papadimitriou/ULLman:87]

Example

Example (Grid dag dynamic programming)
Work-optimality is no problem.

However: No algorithm can achieve
work-optimality and scalable communication at
the same time! [Papadimitriou/UlLman:87]

Example

Example (Grid dag dynamic programming)

Work-optimality is no problem.

However: No algorithm can achieve work-optimality and scalable communication at the same time! [Papadimitriou/UlLman:87]

Outline

Parallel Algorithms
Modelling parallel computation
Modelling parallel algorithms
Longest Increasing Subsequences
Problem analysis
Previous parallel LIS algorithms
Monge matrices
Monge matrices in string comparison
Distance multiplication
Parallel distance multiplication
Sequential algorithm
Parallel algorithm
Applications in string comparison

The Problem

Given a sequence of n numbers, to find the longest subsequence that is increasing.

$$
2,9,1,3,7,5,6,4,8
$$

The Problem

Given a sequence of n numbers, to find the longest subsequence that is increasing.

$$
2,9,1,3,7,5,6,4,8
$$

The Problem

Given a sequence of n numbers, to find the longest subsequence that is increasing.

$$
2,9,1,3,7,5,6,4,8
$$

(alternate solution)

Sequential LIS Algorithms

The LIS can be found by patience sorting.
(see [Knuth:73, Aldous/Diaconis:99, Schensted:61]).

Another approach: LIS via permutation string comparison.
(see [Hunt/Szymanski:77]).

For both algorithms, $\mathcal{W}(n)=O(n \log n)$ in the comparison-based model.

Permutation String Comparison

Definition (Input data)
Let $x=x_{1} x_{2} \ldots x_{n}$ and $y=y_{1} y_{2} \ldots y_{n}$ be two permutation strings on an alphabet Σ.

Definition (Subsequences)
A subsequence u of x : u can be obtained by deleting zero or more elements from x.

Definition (Longest Common Subsequences) An LCS (x, y) is any string which is subsequence of both x and y and has maximum possible length. Length of these sequences: $\operatorname{LLCS}(x, y)$.

How to compute comparison-based LIS using LCS computation?

1. Copy the sequence and sort it.
2. Compute the LCS of the sequence and its sorted copy.

LCS grid dags and highest-score matrices

- The LCS Problem can be represented as Longest path problem on a grid dag.
- In the LIS case, we have n diagonal edges of Horizontal edges have length 0.
The LIS corresponds to a

LCS grid dags and highest-score matrices

The LCS Problem can be

 represented as Longest path problem on a grid dag.- In the LIS case, we have n diagonal edges of length 1.
 length 0.
The LIS corresponds to a

LCS grid dags and highest-score matrices

- The LCS Problem can be represented as longest path problem on a grid dag.
- In the LIS case, we have n diagonal edges of
- Horizontal edges have length 0.

The LIS corresponds to a

LCS grid dags and highest-score matrices

- The LCS Problem can be represented as Longest path problem on a grid dag.
- In the LIS case, we have n diagonal edges of
- Horizontal edges have
- The LIS corresponds to a
 longest top-to-bottom path.

Parallel LIS Algorithms

Garcia, 2001
LIS by parallel dynamic programming.

$$
W(n, p)=O\left(n^{2} / p\right)
$$

This is not work optimal.

Parallel LIS Algorithms

Nakashima/Fujiwara, 2006
PRAM algorithm with

$$
\begin{gathered}
W(n, p)=O((n \log n) / p) \\
\left(\ldots \text { but only if } p<n / k^{2}\right)
\end{gathered}
$$

Work-optimality is restricted:
Theorem (Erdốs, 1935)
Every sequence of n integers has a monotonic subsequence of length $\geq \sqrt{n}$.

Parallel LIS Algorithms

Nakashima/Fujiwara, 2006
PRAM algorithm with

$$
\begin{gathered}
W(n, p)=O((n \log n) / p) \\
\left(\ldots \text { but only if } p<n / k^{2}\right)
\end{gathered}
$$

Work-optimality is restricted:
Theorem (Erdős, 1935)
Every sequence of n integers has a monotonic subsequence of length $\geq \sqrt{n}$.

Parallel LIS Algorithms

Semé, 2006
BSP algorithm with

$$
W(n, p)=O(n \log (n / p))
$$

This is asymptotically sequential.

Our LIS algorithm

LIS computation for a sequence of length n :

$$
\begin{aligned}
W(n, p) & =O\left(\frac{n \log ^{2} n}{p}\right) \\
H(n, p) & =O\left(\frac{n \log p}{p}\right) \\
M(n, p) & =O\left(\frac{n}{p}\right)
\end{aligned}
$$

Outline

Parallel Algorithms
Modelling parallel computation
Modelling parallel algorithms
Longest Increasing Subsequences
Problem analysis
Previous parallel LIS algorithms
Monge matrices
Monge matrices in string comparison Distance multiplication

```
Parallel distance multiplication
    Sequential algorithm
    Parallel algorithm
```

Applications in string comparison

Our Tool: Semi-Local Sequence Comparison

Definition (Highest-score matrix)
The element $A(i, j)$ of the LCS
highest-score matrix of two strings x and y gives the LLCS of substring $y_{i} \ldots y_{j}$ and x.

Definition (Semi-Local LCS)
Solutions to the semi-local LCS problem are given by a highest-score matrix
$A(i, j)$.

Why highest-score matrices?

Space efficiency, [Tiskin:05]
For strings x and y of lengths m and n, we can store highest-score matrix $A_{x, y}$ in $O(m+n)$ space.

Consider three strings x, y, z of length n. Knowing $A_{x, z}$ and $A_{y, z}$, we can compute $A_{x y, z}($ implicitly) in $O(n \log n)$ time.

Highest-score matrices have a Monge property.

Why highest-score matrices?

Space efficiency, [Tiskin:05]
For strings x and y of lengths m and n, we can store highest-score matrix $A_{x, y}$ in $O(m+n)$ space.

Composition, [Tiskin:2009]
Consider three strings x, y, z of length n. Knowing $A_{x, z}$ and $A_{y, z}$, we can compute $A_{x y, z}$ (implicitly) in $O(n \log n)$ time.

Why highest-score matrices?

Space efficiency, [Tiskin:05]
For strings x and y of lengths m and n, we can store highest-score matrix $A_{x, y}$ in $O(m+n)$ space.

Composition, [Tiskin:2009]
Consider three strings x, y, z of length n. Knowing $A_{x, z}$ and $A_{y, z}$, we can compute $A_{x y, z}$ (implicitly) in $O(n \log n)$ time.

How?
Highest-score matrices have a Monge property.

Monge matrices

Density matrix:
Distribution matrix:

$$
\begin{gathered}
D=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad D^{\Sigma}=\left(\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 2 & 3 & 3 \\
0 & 0 & 0 & 1 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
D(i, j)=D^{\Sigma}(i+1, j)-D^{\Sigma}(i, j)-D^{\Sigma}(i+1, j+1)+D^{\Sigma}(i, j+1)
\end{gathered}
$$

If $\left(D^{\Sigma}\right)^{\square}=D$, we call D simple.
If D is non-negative, D^{Σ} is Monge.
If D is a permutation matrix, D^{Σ} is unit-Monge.

Monge matrices

Density matrix:
Distribution matrix:

$$
\begin{aligned}
& D=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad D^{\Sigma}=\left(\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 2 & 3 & 3 \\
0 & 0 & 0 & 1 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& D(i, j)=D^{\Sigma(i+1, j)-D^{\Sigma}(i, j)-D^{\Sigma}(i+1, j+1)+D^{\Sigma(i, j+1)}}
\end{aligned}
$$

If $\left(D^{\Sigma}\right)^{\square}=D$, we call D simple.
If D is non-negative, D^{Σ} is Monge.
If D is a permutation matrix, D^{Σ} is unit-Monge.

Monge matrices

Density matrix:
Distribution matrix:

$$
\begin{aligned}
& D=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad D^{\Sigma}=\left(\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 2 & 3 & 3 \\
0 & 0 & 0 & 1 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& D(i, j)=D^{\Sigma}(i+1, j)-D^{\Sigma(i, j)}-D^{\Sigma(i+1, j+1)}+D^{\Sigma}(i, j+1)
\end{aligned}
$$

If $\left(D^{\Sigma}\right)^{\square}=D$, we call D simple.
If D is non-negative, D^{Σ} is Monge.
If D is a permutation matrix, D^{Σ} is unit-Monge.

Monge matrices

Density matrix:
Distribution matrix:

$$
\begin{gathered}
D=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad D^{\Sigma}=\left(\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 2 & 3 & 3 \\
0 & 0 & 0 & 1 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
D(i, j)=D^{\Sigma}(i+1, j)-D^{\Sigma}(i, j)-D^{\Sigma}(i+1, j+1)+D^{\Sigma}(i, j+1)
\end{gathered}
$$

If $\left(D^{\Sigma}\right)^{\square}=D$, we call D simple.
If D is non-negative, D^{Σ} is Monge.
If D is a permutation matrix, D^{Σ} is unit-Monge.

Monge matrices

Density matrix:
Distribution matrix:

$$
\begin{gathered}
D=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad D^{\Sigma}=\left(\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 2 & 3 & 3 \\
0 & 0 & 0 & 1 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
D(i, j)=D^{\Sigma}(i+1, j)-D^{\Sigma}(i, j)-D^{\Sigma}(i+1, j+1)+D^{\Sigma}(i, j+1)
\end{gathered}
$$

If $\left(D^{\Sigma}\right)^{\square}=D$, we call D simple.
If D is non-negative, D^{Σ} is Monge.

Monge matrices

Density matrix:
Distribution matrix:

$$
\begin{aligned}
& D=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad D^{\Sigma}=\left(\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 2 & 3 & 3 \\
0 & 0 & 0 & 1 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& D(i, j)=D^{\Sigma}(i+1, j)-D^{\Sigma}(i, j)-D^{\Sigma}(i+1, j+1)+D^{\Sigma}(i, j+1)
\end{aligned}
$$

If $\left(D^{\Sigma}\right)^{\square}=D$, we call D simple.
If D is non-negative, D^{Σ} is Monge.
If D is a permutation matrix, D^{Σ} is unit-Monge.

Distance multiplication

We compute the product

$$
P_{C}^{\Sigma}=P_{A}^{\Sigma} \odot P_{B}^{\Sigma}
$$

of two simple unit-Monge matrices P_{A}^{Σ} and P_{B}^{Σ} with

$$
P_{C}^{\Sigma}(i, k)=\min _{j}\left(P_{A}^{\Sigma}(i, j)+P_{B}^{\Sigma}(j, k)\right) .
$$

Our inputs are the permutations corresponding to matrices P_{A} and P_{B}.

We output the permutation for P_{C}.

Outline

Parallel Algorithms
Modelling parallel computation
Modelling parallel algorithms
Longest Increasing Subsequences
Problem analysis
Previous parallel LIS algorithms
Monge matrices
Monge matrices in string comparison
Distance multiplication
Parallel distance multiplication
Sequential algorithm
Parallel algorithm
Applications in string comparison

Sequential distance multiplication

We parallelize the sequential algorithm from [Tiskin:09].

We start with the cube of elementary distance products.

Sequential distance multiplication

In each recursive step of this algorithm we split P_{A} and P_{B} into half-sized hi/lo ranges over j.

Sequential distance multiplication

The two products

$$
\begin{aligned}
& P_{A, l o O}^{\Sigma} \odot P_{B, l o,}^{\Sigma} \\
& P_{A, h i}^{\Sigma} \odot P_{B, h i}^{\Sigma}
\end{aligned}
$$

induce a
permutation P_{C}^{\prime} from which we can compute P_{C}.

$P_{C}(i, k)$

Sequential distance multiplication

We compute the

$$
P_{C}(i, k)
$$

Sequential distance multiplication

$O(n)$ for the divide/conquer steps + two half-sized subproblems:

Overall time
$O(n \log n)$.

$P_{C}(i, k)$

Sequential distance multiplication

How to work out the nonzeros in P_{C} from the hi/lo products?

We have:
$P_{C}^{\sum}(i, k)=\min \left(P_{C, l o}^{\sum}(i, k)+P_{C, n i}^{\Sigma}(0, k)\right.$, $\left.P_{C, h i}^{\Sigma}(i, k)+P_{C, l o}^{\Sigma}(i, n)\right)$.

Sequential distance multiplication

How to work out the nonzeros in P_{C} from the hi/lo products?

Looking at the difference

$$
\begin{aligned}
\delta(i, k)= & \left(P_{C, l o}^{\sum}(i, k)+P_{C, h i}^{\Sigma}(0, k)\right) \\
& -\left(P_{C, h i}^{\Sigma}(i, k)+P_{C, l o}^{\Sigma}(i, n)\right),
\end{aligned}
$$

we get

$$
\begin{aligned}
\delta(i, k)= & \sum_{\hat{\imath} \in\langle 0: i\rangle, \hat{k} \in\langle 0: k\rangle} P_{C, h i}(\widehat{\imath}, \widehat{\kappa}) \\
& -\sum_{\hat{\imath} \in\langle i: n\rangle, \hat{k} \in\langle k: n\rangle} P_{C, l o}(\widehat{\imath}, \widehat{k}) .
\end{aligned}
$$

Sequential distance multiplication

How to work out the nonzeros in P_{C} from the hi/Lo products?

The sign of δ tells us which nonzeros to use. We separate three areas in P_{C} :
$\operatorname{Colour}(i, k)=$ red if $\delta(i, k)<0$
$\operatorname{Colour}(i, k)=$ green if $\delta(i, k)=0$
Colour $(i, k)=$ blue if $\delta(i, k)>0$

Sequential distance multiplication

How to work out the nonzeros in P_{C} from the hi/Lo products?

- blue areas: use nonzeros from $P_{C, h i}$
- red areas: use nonzeros from $P_{C, \iota}$
- green areas: use nonzeros from $P_{C, h i}$ or $P_{C, l o}$, and "special" nonzeros at intersections.

$P_{C}(i, k)$

Sequential distance multiplication

How to work out the nonzeros in P_{C} from the hi/Lo products?

Colours can be computed incrementally \Rightarrow
$O(n)$ time to trace boundary of green area.

Parallel distance multiplication

We compute colours of points on a $p \times p$ grid.

Parallel distance multiplication

Parallel distance multiplication

Parallel distance multiplication

Parallel distance multiplication

Computing δ values on grid points by parallel prefix:

$$
\begin{aligned}
W(n, p) & =O(n / p) \\
H(n, p) & =O\left(p^{2}\right) \\
M(n, p) & =O(n / p)
\end{aligned}
$$

$$
n>p^{3}
$$

Parallel distance multiplication

Maximally $4 p$
blocks can have a non-monochromatic set of corners.

Parallel distance multiplication

We already know the locations of the nonzeros in P_{C} for all monochromatic blocks.

For all i, k within the block, we have:. . .

- monochromatic blue blocks:

$$
P_{C}(i, k)=P_{C, h i}(i, k)
$$

- monochromatic red blocks:

$$
P_{C}(i, k)=P_{C, l o}(i, k)
$$

- monochromatic green blocks: $P_{C}(i, k)=0$
\square separate the green, blue and red areas in time

Parallel distance multiplication

We already know the locations of the nonzeros in P_{C} for all monochromatic blocks.

For all i, k within the block, we have:. . .

- monochromatic blue blocks:

$$
P_{C}(i, k)=P_{C, h i}(i, k)
$$

- monochromatic red blocks:

$$
P_{C}(i, k)=P_{C, l o}(i, k)
$$

- monochromatic green blocks: $P_{C}(i, k)=0$

In non-monochromatic blocks, we have to separate the green, blue and red areas in time $O(n / p)$ per block.

Parallel distance multiplication

Given the nonzeros of two $n \times n$ permutation matrices P_{A} and P_{B}, distributed equally across $p<\sqrt[3]{n}$ processors, we can compute the nonzeros of a matrix P_{C} with $P_{C}^{\Sigma}=P_{A}^{\Sigma} \odot P_{B}^{\Sigma}$ using

$$
\begin{aligned}
W(n, p) & =O\left(\frac{n \log n}{p}\right) \\
H(n, p) & =O\left(\frac{n}{p} \log p\right) \\
M(n, p) & =O\left(\frac{n}{p}\right) \\
S & =O(\log p)
\end{aligned}
$$

Outline

Parallel Algorithms
Modelling parallel computation
Modelling parallel algorithms
Longest Increasing Subsequences
Problem analysis
Previous parallel LIS algorithms
Monge matrices
Monge matrices in string comparison
Distance multiplication
Parallel distance multiplication
Sequential algorithm
Parallel algorithm
Applications in string comparison

LCS computation by distance multiplication

We use parallel distance multiplication in a quadtree merging scheme.

References	$W(n, p)$	$H(n, p)$	$M(n, p)$	S
McColl '95 + Wag- ner/Fischer+:74		$O(n)$	$O\left(\frac{n}{p}\right)$	$O(p)$
McColl '95 + Alves et al. '06, Tiskin' 05	$O\left(\frac{n^{2}}{p}\right)$	$O(n)$	$O\left(\frac{n}{p}\right)$	$O(p)$
[KT:07]		$O\left(\frac{n \log p}{\sqrt{p}}\right)$	$O\left(\frac{n}{\sqrt{p}}\right)$	$O(\log p)$
Shown here	$O\left(\frac{n}{\sqrt{p}}\right)$	$O\left(\frac{n}{\sqrt{p}}\right)$	$O\left(\log ^{2} p\right)$	

LIS computation by distance multiplication

We merge (horizontal) strips.

1

2

3

We get for $n>p^{3}$:

$$
\begin{aligned}
W(n, p) & =O\left(\frac{n \log ^{2} n}{p}\right) \\
H(n, p) & =O\left(\frac{n \log p}{p}\right) \\
M(n, p) & =O\left(\frac{n}{p}\right) \\
S & =O\left(\log ^{2} p\right)
\end{aligned}
$$

Summary and outlook

Summary

- We have shown new scalable algorithms for LCS/LIS computation.
- Our algorithms are scalable in communication and memory as well as computation.

Open questions

- How to achieve work-optimality for the LIS problem?
- Is $H(n, p)=O(n / \sqrt{p})$ a Lower bound for LCS computation?

Thanks! Questions?

Questions?

Parallel Algorithms
Modelling parallel computation
Modelling parallel algorithms
Longest Increasing Subsequences
Problem analysis
Previous parallel LIS algorithms
Monge matrices
Monge matrices in string comparison
Distance multiplication
Parallel distance multiplication
Sequential algorithm
Parallel algorithm
Applications in string comparison

