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Strings, substrings and subsequences. . .



Exact string search

Find pattern abab occurring as substring in text
bbbabababba ⇒

bbbabababba
bbbabababba

Possible in O(n) time (Automata, Boyer Moore, Knuth
Morris Pratt)
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Exact string comparison: Hamming distance

Count mismatches:

dist(bbbabababba, abbbbabaaba) = 3



Approximate string search

One way: subsequence matching

Find pattern abab in text bbbabababba as a
subsequence ⇒

. . .
bbbabababba
bbbabababba

. . .

Possible in O(n) time by constructing automata.
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Approximate comparison: string alignment

Align the maximum number of letters, preserving order:

abbabbbabbaba

bbabaabbba

The aligned letters form the longest common
subsequence (LCS); length of this sequence: LLCS.

dist(x,y) = m + n - 2 LLCS(x,y)
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Approximate comparison

LCS distance: Minimizes number of
insertions/deletions to get from string x to string y.

Extensions we don’t (directly) consider here:

Edit distance: minimize the number of insertions,
deletions, and exchange operations to get from one
string to the other.
Weighted case: assign weights to each operation on
each pair of characters.



The LCS Problem

Complexities of classical solutions (input strings of
length n, r matches, d dominant matches):

Dynamic programming
(Wagner & Fischer, ’74) : O(n2)

⇒ Using “Four Russians” technique
(Masek & Paterson, ’80) : O(n2/ logn)

Dominant match based
(Hunt & Szymanski, ’77) : O((r+ n) logn)

(Apostolico & Guerra, ’87) : O(m logn+ d log(mn/d))
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Seaweeds and networks. . .



What is semi-local string comparison?

Semi-local comparison: compute substring-string
highest-score matrix

A(i, j) = LLCS(xixi+1 . . . xj,y)

and simultaneously all string-substring, prefix-suffix and
suffix-prefix LLCS.



Why compare semi-locally?

Two N×N highest-score matrices can be (min, +)

multiplied in O(N1.5)

⇒ Semi-local comparison is useful for obtaining
efficient parallel LCS algorithms
Semi-local comparison has non-trivial algorithmic
applications itself.
One step closer to fully local comparison (substring
vs. substring)

How to do it:

Use the Seaweed Algorithm, which runs in O(n2)



Seaweed algorithm

Start with extended alignment-dag:
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Drawing this dag partitions the plane into cells.



Seaweed algorithm

We trace seaweeds
through cells
Two seaweeds cross at
most once
We are interested in
start and end points of
seaweeds
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Seaweed algorithm

Querying the LCS distance by counting seaweeds:

a b c a
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Comparison networks

Comparison network:
n wires connected by arbitrary number of
comparators
Comparators have two inputs and two outputs.
⇒ return larger value the predefined output
⇒ return smaller value at the other output.

Traditional method for studying oblivious sorting
algorithms

Transposition network: all comparators only connect
adjacent wires.



Merging using a transposition network

Example (Merging two 4 element sorted sequences)
a1

a2

a3

a4

b1

b2

b3

b4

[Munter, U.S. Patent 5,216,420 ’93]

We call this a DIAMOND(4, 4) network.
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LCS and transposition networks

Observation
Every mismatch cell in the
alignment dag behaves as
a comparator.

Therefore
. . . we can define a
transposition network to
solve LCS problem.
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LCS and transposition networks

Definition (The LCSNET(x,y) network)

Remove all comparators in DIAMOND(|x|, |y|) which
correspond to matches.



LCS and transposition networks

Definition (The LCSNET(x,y) network)

1
1
1
1
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Initialize network with |x| ones and |y| zeros.



LCS and transposition networks

Definition (The LCSNET(x,y) network)
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Count the number of ones which reach the right hand
side ⇒ LCS distance.



An application: Sparse string comparison. . .



Kinds of sparseness

1 Few match cells in the alignment dag
Extreme case: comparison of permutation strings

2 Strings very similar (LCS is long / edit distance is
short)

Not necessarily correlated with number of matches

3 Strings very dissimilar (LCS is short)
Correlated with number of matches, but still different
measure



Obtaining all matches

We want to work match by match. . .
⇒ How to obtain list of matches in less than O(n2)

time?

1 For small alphabets (|Σ| < n): in O(n log |Σ|) by
counting character frequencies

2 For large alphabets: in O(n logn) by sorting one of
the input strings and binary search

(if characters can only be tested for equality, Ω(n2) is a lower bound)



Classical approach for sparse comparison

Trace antichains and their contours:
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The same with 0-1 transposition networks
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The same with 0-1 transposition networks

11

11

1

1

0 0 0 0

0 0 0

01

1

1

1

1

1

1

0

0

1

0

0

1

1

1

1

0

1

0

0

1

0

0

0

0

0

0

1

0

0

1

0
1 1 1 0



Classifying cells
Cells can be classified according to their 0-1
transposition network inputs:
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More about cells

Not all cells in the 0-1 transposition network need to be
evaluated:
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Parameterized LCS computation

We obtain a simple algorithm for computing the LCS in
O(p(n− p)) by tracing zeros and ones (which is
equivalent to the best known result).



Parameterized LCS computation

We can also obtain an algorithm for semi-local
comparison which runs in O(np):



Summary

Transposition networks provide unified view on
different LCS/semi-local comparison algorithms
Transposition networks allow to derive
parameterized algorithms for global LCS more easily
than existing approaches.
We have new parameterized algorithms for sparse
semi-local string comparison running in
O(np+ preproc(n)) and O(n

√
r+ preproc(n))



Outlook

Some further work:
Generalize to other types of distances (edit
distance).
Apply techniques to LCS with non-overlapping
inversions
Another interesting problem: string comparison in
streaming models (i.e. we can only read strings
once/predefined number of times)



Thanks!

. . . any questions?
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